
Developing Cyberspace Data Understanding:

Using CRISP-DM for

Host-based IDS Feature Mining

THESIS

Joseph R. Erskine, Captain, USAF

AFIT/GCS/ENG/10-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/10-01

Developing Cyberspace Data Understanding:

Using CRISP-DM for

Host-based IDS Feature Mining

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Joseph R. Erskine, B.S.C.S.

Captain, USAF

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/10-01

Developing Cyberspace Data Understanding:

Using CRISP-DM for

Host-based IDS Feature Mining

Joseph R. Erskine, B.S.C.S.

Captain, USAF

Approved:

/signed/ 12 Mar 2010

Dr. Gilbert L. Peterson
(Chairman)

date

/signed/ 12 Mar 2010

Dr. Barry E. Mullins
(Member)

date

/signed/ 12 Mar 2010

Dr. Michael R. Grimaila
(Member)

date

AFIT/GCS/ENG/10-01

Abstract

Current intrusion detection systems (IDS) generate a large number of specific

alerts, but do not provide actionable information. Many times, these alerts must be

analyzed by a network defender, a time consuming and tedious task which can occur

hours or days after an attack. Improved understanding of the cyberspace domain can

lead to great advancements in cyberspace situational awareness research and devel-

opment. This thesis applies the Cross Industry Standard Process for Data Mining

(CRISP-DM) to develop an understanding about a host system under attack. Data is

generated by launching scans and exploits at a machine outfitted with a set of host-

based data collectors. Through knowledge discovery, features are identified within

the data collected which can be used to enhance host-based intrusion detection. By

discovering relationships between the data collected and controlled events, false pos-

itive alerts were reduced by over 91% when compared to a leading open source IDS.

This method of searching for hidden forensic evidence relationships enhances under-

standing of novel attacks and vulnerabilities, bolstering ones ability to defend the

cyberspace domain. The methodology presented in this thesis, as well as the features

identified, can be used to further situational awareness research.

iv

Dedicated to Grammy and Grampy, who have filled my childhood and beyond

with warm and happy memories.

v

Acknowledgements

First and foremost, I owe a large debt of gratitude to God. It is through His good

graces alone that I succeed.

To my advisor and committee, thank you for your instruction and mentorship.

Because you have challenged me to do more than I thought possible, I have learned

so much through this process.

To my wife and children, thank you for your patience, love and support through-

out this process. You have been my rock and my inspiration.

Mom and Dad, thank you for guiding me to stay on the right path, encouraging

me to give my best, and for always believing in me.

Last but not least, I’d like to thank those from my career (you know who you

are) who have inspired me to grow, from my days as an Airman Basic through today,

still an Airman. I stand upon your shoulders.

Joseph R. Erskine

vi

Table of Contents
Page

Abstract . iv

Acknowledgements . vi

List of Figures . x

List of Tables . xii

List of Abbreviations . xiv

I. Introduction . 1
1.1 Cyberspace as a Center of Gravity. 1

1.2 Cyberspace Vulnerabilities. 2

1.3 Threats to Cyberspace. 3

1.4 Threat Detection. 3
1.5 Research Overview . 4

1.5.1 Problem Domain 4
1.5.2 Past Research Summary 5

1.5.3 Problem Statement and Hypothesis 5

1.5.4 Experiments . 6

1.5.5 Assumptions and Limitations 7

1.5.6 Results and Conclusions 8

II. Literature Review . 9
2.1 The Cyberspace Domain 9

2.1.1 Cyberspace Priorities 10

2.1.2 Cyber Center of Gravity (COG) 10

2.1.3 Vulnerabilities 11
2.1.4 Threats . 15

2.2 Attack Process . 18
2.2.1 Footprinting . 19

2.2.2 Scanning . 20

2.2.3 Enumeration 21
2.2.4 Gaining access 22

2.2.5 Escalation of privilege 22

2.2.6 Pilfering . 22

2.2.7 Covering Tracks 23

2.2.8 Creating back doors 23

vii

Page

2.2.9 Denial of Service 23
2.3 Sensors . 23

2.3.1 File Sensors . 24
2.3.2 I/O Stream Sensors 24

2.3.3 Process and/or Memory Sensors 25

2.4 Intrusion Detection Systems 25

2.4.1 Types of IDS 25

2.4.2 Signature-based IDS vs Anomaly Detection . . . 28

2.5 Situational Awareness 32
2.5.1 Endsley’s Model 32

2.5.2 Cyberspace Situational Awareness (CSA) 34

2.5.3 JDL Data Fusion Model 37
2.5.4 INFERD . 38

2.6 Knowledge Discovery and Data Mining 39

2.6.1 CRISP-DM . 39
2.6.2 KDD Platforms 40
2.6.3 KDD Algorithms 41

2.6.4 Artificial Neural Networks 42
2.6.5 Analyzing results 44

2.7 Data Sources . 48
2.8 Research Data Sets . 48
2.9 Summary . 49

III. Methodology . 50

3.1 CRISP-DM: Data Understanding 50

3.1.1 Black Hat Client 50
3.1.2 Sensors . 54
3.1.3 Sensor View of System 64

3.2 CRISP-DM: Preparation 66

3.2.1 Data Alignment 68

3.2.2 Feature Selection 69
3.2.3 Signature-Based Feature Identification 71

3.3 CRISP-DM: Modeling and Analysis 72

3.4 Summary . 73

IV. Results & Analysis . 74

4.1 Signatures Discovered 74

4.2 Neural Network Results 76
4.2.1 Alerts Triggered: Data Understanding ANN . . 80

4.2.2 Alerts Triggered: Snort IDS 83

viii

Page

V. Conclusions . 97
5.1 Need for Sustained feature discovery research 98

5.2 Future Works . 99

Appendix A. Forensic Toolkit . 101

A.1 Tools . 101
A.2 Scripts . 101

A.3 Controller Script: Autoexec.vbs 102

A.4 Batch program: ForensicScan.bat 106

A.5 Batch Program: tshark.bat 108

A.6 Batch Program: processes.bat 108

Appendix B. Normal Activity Scripts 109

Appendix C. Cyber Attack Scripts . 111

Bibliography . 114

Vita . 119

ix

List of Figures
Figure Page

2.1. McClure, et al’s. “Anatomy of a Hack” (adopted from [53]). . . 19

2.2. Types of intrusion detection systems and their related search

spaces. [17] . 25

2.3. From 1986-2007, the number of known viruses indicates an ex-

ponential growth trend [67]. 29

2.4. Endsley’s Situational Awareness Model [32]. 32

2.5. AFRL’s NetD COP Decision engines create high-level security

alerts with mission impact assessment from a variety of sensor

and data inputs, using a plug-in architecture [23]. 36

2.6. Baader’s SAIL system architecture [12]. 37

2.7. Data Fusion Group’s Joint Data Library data fusion model for

situational awareness [65]. 38

2.8. The Cross-Industry Standard Process for Data Mining is a cyclic

process consisting of six phases [21]. 39

2.9. Generic tasks of the CRISP-DM Phases. The Data Understand-

ing phase consists of collecting initial data, describing the data,

exploring the data and verifying data quality [21]. 40

2.10. The perceptron is the basic unit of decision within a neural net-

work [35]. 42

2.11. An associative memory neural network is an ANN with exactly

two layers of neurons and two connecting layers of weights [35] 43

2.12. An ANN consisting of three layers of neurons and two connecting

layers of weights. The middle layer is hidden as it is neither input

or output [35]. 44

2.13. Example of a performance plot, used to analyze the mean-squared

error of the classifier. A smaller mean-squared error indicates

higher performance. This plot indicates that the best perfor-

mance (lowest MSE) for the neural network was attained after

nine training epochs. 45

x

Figure Page

2.14. Example of a ROC curve, used to analyze a classifier’s specificity

versus its sensitivity [29]. 47

3.1. Data Understanding is one of the key phases of the CRISP-DM

Process Model [21]. 51

3.2. The CSA Lab environment is comprised of two machines con-

nected to a wireless network, with Internet connectivity provided

by the host network. 51

3.3. Use Performance Monitor to configure the event trace capture.

For captures, the default system provider is used with all capture

options selected. 62

3.4. Forensic segments of a Windows XP workstation, and the sensors

which can monitor them. 65

4.1. The mean squared error of the trained neural network-based clas-

sifier consistently converges to a MSE of 10−3.5 or better, which

indicates the features selected perform very well overall for clas-

sifying normal and malicious host-based activity within the col-

lections gathered. 78

4.2. Upon simulating the trained network against unbiased test data,

results show the features selected perform very well to identify

normal and malicious activity. 79

B.1. “Normal activity” collections were performed by launching our

sensors, followed by carrying out this series of activities. Each

event’s start and stop times were recorded for later analysis. . . 110

C.1. “Scanning activity” collections were performed by launching our

sensors on our target system, followed by carrying out this series

of activities from the black hat system. Each event’s start and

stop times were recorded for later analysis. 112

C.2. “Exploit activity” collections were performed by launching our

sensors on our target system, followed by carrying out this series

of activities from the black hat system. Each event’s start and

stop times were recorded for later analysis. 113

xi

List of Tables
Table Page

2.1 19 Deadly Sins of Software Security [41]. 13

2.2. Common tools used by hackers to discover host systems, enumer-

ate and exploit their vulnerabilities. 16

2.3. A confusion matrix is used to analyze the overall success rate

of a classifier by accounting for errors of omission and errors of

commission. 46

3.1. The relevant software configuration for the black hat machine

includes a number of well-known scanning and exploit tools. . . 52

3.2. Configuration of the “target” machine. Sensors are annotated as

either transactional (t) or snapshot (s) sensors, as explained in

Section 3.1.2. 53

3.3 “Process Overview” sensor features which are evaluated for ef-

fectiveness in distinguishing between normal and attack events. 56

3.4 Some of the “Network packet sensor” features which are evalu-

ated for effectiveness in distinguishing between normal and attack

events. 58

3.5 “Process Dlls” sensor features which are evaluated for effective-

ness in distinguishing between normal and attack events. . . . 59

3.6 “Process to Ports” sensor features which are evaluated for effec-

tiveness in distinguishing between normal and attack events. . 60

3.7 “Process to session” features which are evaluated for effectiveness

in distinguishing between normal and attack events. 61

3.8 Event Trace for Windows features which are evaluated for effec-

tiveness in distinguishing between normal and attack events. . 63

4.1. Summary of Collection times, number of files and the amount of

raw data generated. Collection times are intended to simulate

a long period of probing followed by a direct and quick set of

exploits which take advantage of learned vulnerabilities. 74

xii

Table Page

4.2. Upon simulating the trained network against unbiased test data,

results show the the features selected perform very well to iden-

tify normal and malicious activity. 77

4.3 The data understanding ANN generated 3 alerts, 3 false positive

alerts, and 0 false negatives, pertaining to the target machine’s

network activity during 40 minutes of what is considered normal

activity. While the events were related to valid user activity, the

threshold for the number of active ports was likely set too low,

resulting in the false identification of scanning activity. 80

4.4 The data understanding ANN generated 85 alerts, with 4 false

positives and 11 false negatives (10 of which were false negatives

for Snort as well), pertaining to the target machine during the 40

minutes of scanning activity intermixed with periods of normal

activity. 81

4.5 The data understanding ANN generated 164 alerts, with 3 false

positives and 5 false negatives (3 of which were false negatives

for Snort as well) pertaining to the target machine during the

nine minute collection period of intermixed normal and exploit

activity. 82

4.6 Snort generated 285 alerts, with 285 false positives and 0 false

negatives, pertaining to the target machine during 40 minutes of

what is considered normal activity for just one machine. . . . 84

4.7 Snort generated 561 alerts, with 4 false positives and 9 false nega-

tives, pertaining to the target machine during 40 minutes of what

intermixed scanning and normal activity for just one machine. 86

4.8 Snort generated 57 alerts, 0 false positive alerts, and 6 false neg-

ative alerts pertaining to the exploit collection. 93

4.9 Comparison between Snort and ANN Ruleset false positive and

false negative alerts. 94

A.1. Executable files used as part of the forensic toolkit (on the target

machine). If you’re unable to secure the same version, parsing

the output may require rework. 101

xiii

List of Abbreviations
Abbreviation Page

DoD Department of Defense . 1

COG Center of gravity . 1

C2 Command and Control . 1

FY Fiscal year . 2

CIA Confidentiality, integrity, availability 3

Cyber Cyberspace . 3

DDoS Distributed denial of service 3

IDS Intrusion detection system 3

JP Joint publication . 9

GIG Global Information Grid 9

C2 Command and control . 11

SA Situational awareness . 11

HTTP HyperText Transfer Protocol 22

LDAP Lightweight Directory Access Protocol 22

SQL Structured Query Language 22

I/O Input/output . 24

NIC Network Interface Card 24

NIDS Network IDS . 26

PIDS Protocol-based IDS . 26

APIDS Application protocol-based IDS 26

HIDS Host-based intrusion detection system 27

DISA Defense Information Systems Agency 27

ESSG Enterprise-wide Information Assurance and computer Net-

work Defense Solutions Steering Group 27

COTS Commercial-off-the-shelf 27

xiv

Abbreviation Page

DEU Data Extraction Utility 35

SAIL Situational Awareness Inference and Logic 36

CNL Controlled natural language 36

INFERD INformation Fusion Engine for Real-time Decision-making 38

KDD Knowledge Discovery and Data mining 39

ACM Association for Computing Machinery 39

SIGKDD Special Interest Group for KDD 39

DMG Data Mining Group . 39

CRISP-DM CRoss Industry Standard Process for Data Mining 39

WEKA Waikato Environment for Knowledge Analysis 41

ANN Artificial neural network 42

ROC Receiver operating characteristic 44

MIT Massachusetts Institute of Technology 48

DARPA Defense Advanced Research Projects Agency 48

WSH Windows Script Host . 54

VM Virtual Memory . 56

GUI Graphical User Interface 57

DLL Dynamic-linked library . 58

ETW Event Trace for Windows 61

ETL Event trace log . 61

PID Process ID . 68

SPID Standard Process ID . 68

FTW Forensic Timestamp Window 69

MANET Mobile Ad hoc Network 69

T-SQL Transact SQL . 70

UNC Universal Naming Convention 75

MUP Multiple UNC Provider 75

API Application Program Interface 99

xv

Developing Cyberspace Data Understanding:

Using CRISP-DM for

Host-based IDS Feature Mining

I. Introduction

Cyberspace situational awareness research is an effort to build and refine human

understanding of the cyberspace domain, the globally interconnected set of comput-

ing and communication resources upon which the Department of Defense (DoD) relies

upon for carrying out its mission. There are a number of motivations for enhancing

cyberspace situational awareness. Among these are the DoD’s increased reliance upon

the cyberspace domain, the continually expanding arsenal of cyberspace threats, and

the tradeoffs between cyberspace threat detection effectiveness versus efficiency and

human understanding. The focus of this document is on developing understand-

ing, specifically related to host-based intrusion detection, and to determine if such a

methodology could be used to focus the operator to the most pertinent alerts.

1.1 Cyberspace as a Center of Gravity.

Carl Von Clausewitz [25], an early 19th century military strategic theorist, orig-

inated the concept of centers of gravity (COG), as a “hub of all power and movement

upon which everything depends”. The DoD’s increased reliance upon cyberspace for

accomplishing both support and operational tasks arguably positions cyberspace as

its most critical COG. Cyberspace permeates air, land, sea and space operations.

Cyberspace systems are force multipliers; by automating tedious administrative tasks

and increasing the depth and breadth of day to day information sharing, military per-

sonnel are able to accomplish “more with less”. Command and control (C2) systems

provide synergistic effects, whether through advanced workflow systems for coordi-

nating and disseminating orders, or by enhanced heads up display systems for tacti-

cal, operational and strategic decision makers. In a time of war, the GIG’s massive

1

bandwidth enables unprecedented speed for providing enhanced situational awareness

capabilities such as unmanned aerial vehicle or precision guided munitions video feeds.

Not only a critical enabler to joint warfare, the projection of cyberspace power for

coordinated efforts provides an awesome advantage over less technologically advanced

combatant forces. The joint warfighter’s ability to get the right information to the

right people at the right time in a trusted means is critical to deterring war and, when

necessary, projecting power to protect national security interests.

1.2 Cyberspace Vulnerabilities.

The more complex and interconnected/interdependent systems become, the

harder it is to secure them. Each new entry point, whether physical or virtual, in-

troduces a set of potential vulnerabilities which must be hardened against malicious

use. To make matters worse, it could take as little as just one vulnerability in the

collective to provide the means by which an attacker can cause massive damage.

Even as the number and complexity of ubiquitous computing platforms are on

the rise, software development has been increasingly outsourced. At the end of fiscal

year (FY) 1994, the United States Air Force had 2,892 “blue-suit” (USAF military)

computer programmers. By the end of FY 2008, the Air Force was down to 921

blue-suit programmers, one-third of its 1994 population [2]. Almost all of the hard-

ware and software systems the Air Force depends upon to accomplish its mission are

acquired as commercial-off-the-shelf (COTS) solutions. Desktop computers, network

equipment and mobile computing devices, server software, operating systems and of-

fice automation suites are each purchased in this way. The Air Force lets countless

contracts to build, install and maintain custom software solutions, in the form of

stand-alone, client/server or internet applications in an effort to deliver long-term

monetary savings to the government.

The problem with this trend with regard to systems security is that one does

not know for sure that the software is built to do only what it is intended to do. How

much does one know about another’s development process? Do they follow secure

2

software development best practices? Does one know if these hardware and software

platforms are introducing (intentionally or unintentionally) vulnerabilities to be ex-

ploited? Industry experts [41] say that a person cannot trust the security of software

they did not develop themselves. The trusted computing initiative attempts to ad-

dress these problems, but it has been shown that the security of a computer system

is undecidable at best since it is unknown what emerging vulnerabilities linger on the

horizon. Put another way, threat protection is highly experiential – an computing

system cannot protect itself against threats it has never encountered or anticipated.

1.3 Threats to Cyberspace.

Unfortunately, adversaries know of the DoD’s reliance upon the cyberspace do-

main and its vulnerabilities, and is working hard to level the playing field and even

to gain the advantage through information warfare tactics. Without engineering cy-

berspace to assure confidentiality, integrity, availability (CIA), the DoD loses a critical

asymmetric advantage over a less advanced combatant force. Cyber threats have a

goal to disrupt, degrade or deny the CIA of DoD computer networks. All-too-common

attack methods include distributed denial of service (DDoS) attacks, deployment of

viruses, spyware, rootkits or “botnet zombies”, and interactive exploitation (hacking)

of known software/hardware vulnerabilities such as causing buffer overflows to gain

control of a computer system. Once a system is compromised, it can be used by

the attacker as a jumping off point to another, deeper network attack, or to pilfer

information for malicious use.

1.4 Threat Detection.

Intrusion detection systems (IDS) play a major role in cyberspace threat de-

tection. An IDS is a software or hardware system which automates the process of

monitoring events occurring in a computer system or network, analyzing them for

signs of security problems [13]. The two main types of IDS are signature based IDS

and anomaly detection IDS.

3

A signature-based IDS performs well for detecting known threats, but cannot

properly identify a novel threat; it must have a signature in its database which exactly

matches a given threat in order to detect it. System administrators must constantly

update threat-detection signatures to keep up with the ever expanding threat pool.

Additionally, detecting a network attack solely through signature-based systems has

been shown infeasible [38]. As quickly as a signature is created for an exploit, a hacker

can unleash a slightly different version, a variant, requiring a completely new signature

for detection. This is why zero day exploits are widely successful; a signature has

either not been created, or cannot be deployed in time to prevent all possible damage.

Given the DoD’s heavy dependence upon cyberspace, the vulnerable nature of

cyberspace, and the multitude of threats which aim to undermine its confidentiality,

integrity and availability, continued research of this volatile domain is paramount.

1.5 Research Overview

1.5.1 Problem Domain. One major difficulty facing the cyber situational

awareness research community relates to the massive dimensionality of the threat

search space. Due to the expanse of the cyberspace domain and the limitations of

processing power, the environment is only partially-observable. Stated otherwise, it is

infeasible to permute all combinations of sensor data in real time, sensors need to be

wisely chosen for the system to attend to. Finding an optimal feature subset for build-

ing a classifier has been shown to be an intractable problem [43], and many problems

related to feature selection have been shown to be NP-hard [51]. Theoretically, given

infinite time, sensors, storage and computing power, perfect situational awareness can

be derived. Of course this is not the case; any situational awareness obtained will be

constrained by the resources allocated and the time bounds acceptable to solving the

problem. Situational awareness is concerned not only with its effectiveness, but also

its efficiency.

4

1.5.2 Past Research Summary. Given that signature-based sensors are not

feasible for detecting all threats, researchers must consider alternative solutions. Re-

searchers have proposed threat detection methods, attacking the problem from various

angles over the years; a representational few of these are discussed further in Chapter

II. The bulk of the research efforts for threat detection thus far focuses on developing

methods relying solely on network traffic [16] [46] [47] [11] [36] [38], solely on event

logs [52] [69] [63], or solely on system calls [34] [55]. Surprisingly, no research efforts

thus far has attempted to combine data from various system sensor categories, such

as file I/O, network traffic and process meta data, in order to form a larger picture of

what data is most relevant for the identification of threats. The fusion of multi-sensor

data is studied at great length [15], but not toward the understanding of what data

is most important to identifying specific cyberspace threats. Situational awareness

research aims to bring together raw data to formulate higher levels of understand-

ing. This requires transforming the data from its raw form into data which provides

decision-quality information.

1.5.3 Problem Statement and Hypothesis. A problem which continues to

plague intrusion detection systems is a high incident of false positive alerts, the alert-

ing of malicious activity when it is not actually present. A system administrator must

filter through these false alerts in order to find and act upon alerts which pertain to

truly malicious activity. In order to improve the accuracy of an IDS and ease the bur-

den on system administration personnel, a methodology for reducing the incidence of

false positive alerts, while still accurately identifying malicious events, is needed.

This thesis presents a methodology to expand cyberspace data understanding for

the purpose of improving threat detection accuracy. By identifying relevant features

from an array of sensor data elements, this methodology identifies not only if a system

is under attack or not, but also what stage of an attack is occurring.

The research hypothesis is that the discovery of correlated forensic evidence in

data to a known attack event, the most relevant sets of features to attend to can be

5

identified. Knowledge of which sets of features an IDS should attend to can greatly

decrease the incidence of false positive alerts while still accurately, and economically,

identifying malicious events.

1.5.4 Experiments. A small network laboratory is established consisting of

a two machines: a target machine and an attack machine. The target machine is

outfitted with a number of open source sensors to monitor network activity, system

events and changes in process meta data. The attack machine is loaded with a number

of malicious tools which can be used to scan the target machine for vulnerabilities

and launch exploits to take advantage of these vulnerabilities.

Data is collected by activating the target machine’s sensors and executing a

scripted series of events. These events simulate normal, scanning and exploition

activities as the target machine’s sensors capture data to a repository.

A Java-based framework is developed to parse and consolidate thousands of

sensor-generated files into a raw set of features to analyze, aggregated into two sec-

ond time windows to allow for data alignment. The framework is built to be extend-

able, allowing for the incorporation of new sensors based upon new or changing data

requirements.

A Microsoft SQL Database is used to aggregate events into two-second time-

frames, and to analyze both continuous and discrete features. Numeric features are

compared statistically, to include differences between min, max, mean, variance, skew-

ness and kurtosis. A comparison of the statistical differences between normal, scan-

ning and exploitation activity is performed. Numeric features are only selected if their

measures are significantly outside those of normal activity. A set selection method is

used to analyze discrete features. Features which are in either the scanning or exploit

collection, but not in the normal collection (or occur in much higher aggregated in-

cidence than in the normal collection) were correlated against experiment events at

the time. Selected features were used to label data as normal, scanning or attack.

6

A MATLAB neural network is trained and then used to classify, in an unbiased

manner, records of the selected features. The performance and classification accuracy

of the neural network is analyzed. Labeled data was manually cross-referenced against

the scripted events to determine false positive and false negative alerts the feature set

generated. Results were compared to alerts generated by a leading open source IDS.

1.5.5 Assumptions and Limitations. The following are assumptions and

known limitations of this research:

Controlled Environment For research and analysis purposes, and due to the po-

tential damaging consequences of performing network attacks on a “live” net-

work, experiments are carried out in an isolated computer lab environment.

Experiments use pre-scripted simulations of a small subset of normal, scanning

and exploit activity, and do not represent the totality of activities which can be

executed on (or against) a host machine. Collections are additionally focused

on monitoring one system, not a series of systems or their network. Due to

these facts, resulting feature selection and classification data is considered bi-

ased toward the operating system monitored during experimentation, selected

attack tools and sensors, and the events in the scripts. However, since this thesis

applies a methodology which can be extended, it serves as a proof of concept

versus a deliverable IDS platform. Additional collections across many systems

including varied events will likely produce different results.

Sensor Impact To System The selected methodology involves the collection of a

live system’s internal forensic data, which involves execution of programs and

persisting data to the target system. While care is used to select lightweight

sensors over more burdensome ones, sensor activity impact collections in two

ways. First, the system being monitored is running additional programs to sense

the host environment, which utilizes system resources such as the machine’s pro-

cessor(s), memory, and hard drive. Second, collected data reflects information

7

pertaining to sensor activity. These facts should be taken into account during

later stages of the experiment.

Partial Observable Environment Given the size of the search space and the lim-

itations of processing power and the sensors selected, the host environment is

only partially observable. Stated otherwise, it is infeasible to observe all possible

portions of system’s state in real time. Given this fact, care is taken to choose

sensors which both provide a unique view of the search space in order to provide

as much forensic evidence as possible. Optimality conditions for sensor selec-

tion include consistency, completeness, speed, and resource overhead. While no

formal method is used to select sensors for observing the target environment,

these conditions were taken into account.

1.5.6 Results and Conclusions. Results show that the methodology pre-

sented in this thesis improved classification of host-based events by 91% fewer false

positive/false when compared to a leading open source intrusion detection system for

a set of controlled attack experiments. The improved accuracy not only aids in the

identification of malicious events, but also reduces administrative burden for network

defenders who would have to manually filter through false alerts to find truly relevant

events. The application of the CRISP-DM process is an effective means by which to

discover hidden data relationships within forensic evidence.

8

II. Literature Review

To support this body of work, an understanding of related work in the area of the

threat detection problem, as it pertains to cyberspace situational awareness, must be

developed. Pertinent areas of research within the scope include, but are not limited

to: intrusion detection systems, cyberspace situational awareness systems, knowledge

discovery and artificial intelligence.

As a nation and a profession of arms, the United States and USAF rely heav-

ily upon the cyberspace domain. However, time and time again, one learns all too

painfully of the vulnerabilities and varied threats to cyberspace. Hundreds of solutions

have been applied to the threat detection problem; development of data understanding

is one method in a consistently growing area of intrusion detection research.

2.1 The Cyberspace Domain

The Cyberspace domain is characterized by “the use of electronics and the

electromagnetic spectrum to store, modify, and exchange data via networked systems

and associated physical infrastructures” [24].” As mentioned in Joint Publication (JP)

6-0 [7], Doctrine for Command, Control, Communications, and Computer (C4) Sys-

tems Support to Joint Operations, the Global Information Grid (GIG) is “the globally

interconnected, end-to-end set of information capabilities, associated processes and

personnel for acquiring, processing, storing, transporting, controlling, and presenting

information on demand to joint forces and support personnel.” The GIG includes “all

owned and leased communications and computing systems and services, software (in-

cluding applications), data, security services, and other associated services necessary

to achieve information superiority.” Cyberspace is utilized across air, land, sea and

space domains. In other words, the GIG is the infrastructure upon which all digital

operations the Air Force and its partners rely upon to carry out the mission, from

administrative tasks to full-scale operations.

9

2.1.1 Cyberspace Priorities. There are four strategic priorities listed by the

Chairman of the Joint Chiefs of Staff related to Cyberspace [24]:

• Gain and maintain initiative to operate within adversary decision cycles.

• Integrate cyberspace capabilities across the range of military operations.

• Build capacity for cyberspace operations.

• Manage risk for operations in cyberspace.

While this work pertains to each of the Chairman’s four priorities, it is most rele-

vant to the latter two. First, the capacity for cyberspace operations relies heavily upon

gaining and maintaining information superiority. The methodology demonstrated in

this work can be applied toward enhancing information superiority, specifically with

regard to host-based intrusion detection. Second, the expansion of cyberspace data

understanding through this and similar works aid in the detection of threats, risky

software or computing practices, which can be applied to managing risk for operations

in cyberspace.

2.1.2 Cyber Center of Gravity (COG). As mentioned in Chapter 1, Carl

Von Clausewitz [25] originated the concept of centers of gravity concept as a “hub

of all power and movement upon which everything depends.” JP 1-02 [5], Doctrine

for Joint Planning Operations, further defines a center of gravity as a “source of

power that provides moral or physical strength, freedom of action, or will to act.” JP

5-0 [6], Joint Operation Planning, states that the most important task confronting

planners in this process is “being able to identify friendly and adversary strategic

centers of gravity; that is, the sources of strength, power, and resistance. This task

is critical because “faulty analysis of friendly or adversary centers of gravity can

have very serious consequences; specifically, the inability to accomplish the military

objectives at an acceptable cost and the unconscionable expenditure of lives, time,

and materiel in efforts that do not produce decisive strategic or operational results.

10

Military theorists have identified four major powers, or centers of gravity, which a

nation state can use to influence another nation state:

• Military power: Capability to apply military arms to project violence.

• Political power: Diplomatic capacity and public support.

• Industrial: Ability to manufacture and sell goods

• Economic: Monetary reserves (and currency valuation within global market).

JP 6-0 [7] states that command and control (C2) consists of two elements:

people, and (collectively) C2 facilities, systems, communications, procedures. JP 6-0

also states that “C2 is essentially about information: getting it, judging its value,

processing it into useful form, acting on it, and sharing it with others.” Of the two

basic uses for information, the first is to “help create situational awareness (SA) as the

basis for a decision.” The second is to direct and coordinate actions in the execution

of the decision.

Certainly, the Cyberspace Domain provides a source of strength, power and

resistance for the DoD. It is a critical COG, as cyberspace permeates throughout

the DoD mission. It may also be the DoD’s most vulnerable COG: like the space

domain, cyberspace has no definitive borders. However, unlike space, cyberspace is

accessible at a very low cost, and can be exploited from any one or a group of millions

of interconnected phones, radios and computers. Unfortunately, our enemies know

this as well, and are actively pursuing ways to undermine this most critical center

of gravity. The DoD’s most important asset, without regard to its people, is its

information. The DoD operates networks with varying levels of security classification.

2.1.3 Vulnerabilities. Computers and networks expose a number of vul-

nerabilities which can be exploited by malicious parties. Among these are physical,

system/network, personnel, and software vulnerabilities.

Physical Vulnerabilities. Lack of physical protection of computing assets and

information is the most basic vulnerability. When discussion about physical vul-

11

nerabilities arises, one typically thinks of physical access to business office, network

operations control area and server room security. However, with today’s pervasive

and ubiquitous computing capabilities, physical vulnerabilities are now extended into

personal residences, automobiles and even on a person. A laptop or mobile comput-

ing device left unsecured from theft can present a golden opportunity to the would-be

intruder. The Washington Post [56] reported on a disturbing trend in Chicago indi-

cates up to 160,000 mobile devices (cell phones, blackberries, etc) are left behind in

city taxi cabs, but only 50–60% of those ever get reunited with their owner. They

further cited a related survey done by Symantec which indicated that up to 37 per-

cent of those devices potentially contain confidential business data; in Chicago alone,

this would result in 26,640 potential breaches in security. Examples of breakdowns

in physical security potentially affecting military personnel include the now infamous

2006 Veteran’s Administration “stolen” laptop which contained privacy act records of

26.5 million past and present U.S. service members, and the 2009 discovery [26] of an

MP3 player purchased for $9 from a pawn shop which contained personnel data and

mission briefs from active theaters of operations. An unsecured asset which falls into

the wrong hands can yield disastrous consequences, from identity theft to operational

compromise which can result in the loss of human life.

Personnel Vulnerabilities However, in the hands of an untrained, negligent, or

malicious user, these protections can easily be incorrectly configured, disregarded

or potentially subverted. If users improperly install, configure or maintain a sys-

tem, they expose their systems to vulnerabilities that could have been otherwise

mitigated. Some examples of these negligent acts include not changing the default

password for administrator accounts, not disabling/deleting guest accounts, not set-

ting web browser security settings appropriately, not keeping system patched against

newly discovered vulnerabilities, implementing weak password policies, and utilizing

no/weak encryption. Examples of malicious user activity are discussed in Section

2.1.4.

12

Computer System/Network Vulnerabilities. A computer typically has an oper-

ating system such as Microsoft Windows or Ubuntu Linux, office automation software

like Microsoft Office or OpenOffice suites, application software such as Mozilla Fire-

fox or Adobe Illustrator, antivirus and/or personal firewall software, entertainment

and/or other software. Collectively, thousands of files compete for resources and com-

municate internally with each other and across networks. Particularly with operating

systems and applications which communicate across a network, many programs have

user-configurable protection mechanisms intended to provide users the capability to

minimize their exposure to vulnerabilities. Likewise, networking hardware such as

routers, switches and firewalls each have software which set rules for systems, ports

and protocols allowed to communicate across them.

Software Vulnerabilities. Computer systems communicate with each other across

shared infrastructure using standard protocols. Because of the open standards com-

munication systems use, it becomes imperative to ensure only safe (and authenticated

as appropriate) communication takes place, and programs should properly handle any

exceptions that arise from malformed inputs. Unless a computer system’s programs

are developed with security in mind from the beginning, they likely contain exploitable

vulnerabilities. Malicious user inputs to such programs can subvert the security of the

system, allowing an attacker to disrupt, deny or degrade the confidentiality, integrity

or availability of the victim’s system. Howard, et al. [41] describe in great detail the

nineteen “deadly sins” of software security, as summarized in Table 2.1.

Table 2.1: 19 Deadly Sins of Software Security [41].

19 Deadly Sins of Software Security

Vulnerability Coding Sin

Buffer Overruns Failure to validate array boundaries before read/write

Continued on Next Page. . .

13

Table 2.1 – Continued

Vulnerability Coding Sin

Format String Problems Failure to validate user input for malicious format string

sequences before returning data

Integer Overflows Failure to check for integer over/underflow conditions

when performing mathematical operations or casting

data types

SQL Injection Failure to validate user input for malicious SQL state-

ments

Command Injection Failure to validate user input for malicious command

statements

Failing to Handle Errors Failure to ensure errors are appropriately handled

Cross-Site Scripting Failure to validate user input for malicious HTML

Failing to Protect Network

Traffic

Failure to use secure protocols for communication

Use of Magic URLs and

Hidden Form Fields

Failure to avoid using magic URLs and hidden form

fields to transmit sensitive information

Improper Use of SSL and

TLS

Failure to validate certificates, chain of trust and check

certificate revocation

Use of Weak Password-

Based Systems

Failure to strongly encrypt passwords for transmission

and/or storage

Failing to Store and Protect

Data Securely

Using weak access control mechanisms or hard-coding

secret data

Information Leakage Failure to protect sensitive information from inadvertent

disclosure

Improper File Access Failure to verify user access to files or protect against

directory traversal attacks

Continued on Next Page. . .

14

Table 2.1 – Continued

Vulnerability Coding Sin

Trusting Network Name

Resolution

Reliance upon Domain Name Service or similar service,

which may be compromised or spoofed, for establishing

connections

Race Conditions Failure to avoid race conditions between threads or pro-

cesses

Unauthenticated Key Ex-

change

Failure to validate sender identity during key exchange

Cryptographically Weak

Random Numbers

Using pseudo-random number generation for cryptogra-

phy

Poor Usability Designing a non-intuitive or overly complex user inter-

face, especially for setting security features

2.1.3.1 Hacking Tools. There are thousands of tools hackers can use to

discover systems and their vulnerabilities, crack passwords and exploit system security

deficiencies. Over the years, system administrators developed tools for centralized or

remote troubleshooting and administration of network systems and user accounts.

Unfortunately, in the hands of a hacker, these tools provide invaluable insights which

can be used for malicious ends. A few of the prominent tools as listed by Insecure.org

[8] are highlighted in Table 2.2.

2.1.4 Threats. Lt. Gen. William Shelton, the Air Force’s Chief Informa-

tion Officer, recently briefed the House Armed Services Committee panel, “Threats

in cyberspace move at the speed of light, and we are literally under attack every day

as networks are constantly probed and adversaries seek to exploit vulnerabilities.”

Threats come in many forms, some from direct interaction by hackers, others via pro-

grams or tools developed by hackers. Some of the main threats to the confidentiality,

15

Table 2.2: Common tools used by hackers to discover host systems, enumerate and
exploit their vulnerabilities.
Google The ubiquitous search engine of choice for hackers can

be used to obtain corporate knowledge, akin to dump-
ster diving, to learn things such as employee names and
unsecured sensitive information about communications
systems and programs

Nmap Program which performs host and port scanning to dis-
cover machines and services running on a network

Dsniff Suite of network auditing and penetration testing pro-
grams

Nessus Vulnerability assessment tool for Unix and Windows
Wireshark Network protocol analyzer for Unix and Windows
Metasploit Framework for developing, testing and deploying exploit

code
Tcpdump /
Windump

Network packet sniffer for Unix / Windows

Cain and
Abel

Password cracking tool for Windows

Ping Tool which tests ability to reach a specific machine by
IP Address

Netstat Displays protocol statistics and current network connec-
tions

Tracert Displays network route between querying machine and
target machine by IP Address

SSH Secure terminal emulator for remotely interacting with
command line

SysInternals A suite of Microsoft Windows tools (ProcessExplorer,
PsTools, Autoruns, RootkitRevealer, TCPView among
others) for monitoring activity on a system.

16

integrity and availability of DoD networks include malware, denial of service attacks

and insider threats. At the root of each of these threats is the hacker.

2.1.4.1 Hackers. An understanding of the hacker mindset, to include

motivations and how hackers view systems, is important to establishing effective de-

tection techniques. Gregg, et al. [37] discusses various types of hackers, thier moti-

vations and varying levels of expertise. There are three main categories of hackers:

whitehat, blackhat and grayhat. Whitehat hackers perform “ethical hacking”: they

employ hacking techniques to uncover security vulnerabilities, and use this informa-

tion to better secure their networks. However, blackhat hackers have the intent of

exploiting security vulnerabilities for malicious ends (disrupt, deny or degrade service,

unauthorized data access or exfiltration, financial theft, etc). Grayhat hackers do a

little of both, have ambiguous loyalties and should not be trusted for whitehat duties.

Blackhat hackers tend to be either means-oriented or goal-oriented.

Means-Oriented Hackers. Means-oriented blackhats are hack-

ers which focus on breaking a particular type or facet of a computer system, and

include phreakers, whackers, software crackers/hackers and system crackers/hackers.

Phreakers are the original hackers, who took advantage of weaknesses in telecommuni-

cations systems with a simple goal: making free phone calls. Whackers are classified

as blackhat hackers who typically focus their skills on attacking wireless networks.

Software crackers/hackers typically use reverse engineering to bypass software licens-

ing, but may also use their skills to subvert other software security mechanisms (such

as encryption) for further exploitation. System cracker/hackers are highly skilled at

attacking vulnerabilities in operating systems; they build worms, viruses and trojans

with the potential for world-wide impact.

Goal-Oriented Hackers. Goal-oriented blackhats focus more on

the ends: they desire computer system compromise in order to accomplish some ob-

jective. Goal-oriented blackhats include script kiddies, disgruntled employees, hack-

17

tivists and cyber terrorists/cyber-criminals. Script kiddies are those blackhat hackers

who run pre-built hacking programs (by hackers with better skills) against a target

system; they tend to have no or minimal computer programming experience or skills,

and most likely do not understand how the tools they use work. This does not di-

minish the threat they pose, however. Script kiddies have been known to, among

other things, steal (and use) credit card and banking account information and access

classified government computer systems. A disgruntled employee presents a particu-

larly dangerous threat, as they have not only already been granted access to systems

for the performance of their duties, but an increased potential for employing social

engineering techniques as a “trusted agent” of the organization to gain information

to further exploit systems. Hacktivists are blackhat hackers who have a political mo-

tivation to attack a system. Hacktivists generally deface websites to promote their

political ideology. Cyber terrorists/cyber-criminals are those blackhat hackers who

are paid to attack or exploit assets belonging to governments, corporations or in-

dividuals [37]. Their goals are to generally to exfiltrate sensitive information (e.g.

governmental/corporate espionage) data or to disrupt or deny access to resources.

2.2 Attack Process

A hacker cannot exploit a computer system he/she knows nothing about. In fact,

the process to exploit a system is typically multi-phased, and can occur very quickly

(and noisily from a sensor perspective) or span days or weeks (and stealthy from a

sensor perspective, “low and slow” to avoid automated detection). In order to exploit

systems on a network, a hacker must first learn what systems are reachable, what

services are hosted by the reachable systems, and discover potential vulnerabilities

through the identification of installed software versions and patch levels. Some of

these steps may be bypassed due to data gleaned from dumpster diving, web surfing or

social engineering tactics. Depending upon the goals of an attack, and the knowledge

the attacker has on hand, an attacker will carry out one or more of the following

stages of attack processes. McClure, et al. formally categorize attack stages into

18

Figure 2.1: McClure, et al’s. “Anatomy of a Hack” (adopted from [53]).

footprinting, scanning, enumeration, gaining access, escalating privilege, pilfering,

covering tracks, creating back doors, and denial of service activities; the process flow

is depicted in Figure 2.1 [53]. Gregg [37] offers an almost identical process, but uses

the term reconnaissance in place of footprinting, and does not address pilfering and

denial of service as formal stages of the attack process.

2.2.1 Footprinting. The first stage of an attack process, footprinting, is

to farm through publicly available information to build a profile of the organization’s

security posture. This farming is typically aimed at learning ways to intrude the orga-

nization’s internet, intranet, extranet and remote access environments [37]. By using

a variety of tools and data sources, a hacker can learn domain names, network blocks

and subnets, DSN hostnames, system architecture, protocols used, and other clues

that provide starting points within the environment to later map out the network [53].

To footprint a network, a hacker may start by querying information listed by domain

19

registrars and DNS servers (e.g. via whois or nslookup), or may attempt to gain

insights by web searching for postings linked to the organization (e.g. organization’s

public website, third party blogs, job or alternative sites, or via Google hacking [37].

Other tactics a hacker may use to discover information about an organization’s en-

vironment include dumpster diving, web surfing or social engineering tactics such as

phishing [53].

2.2.2 Scanning. The second stage of an attack process is scanning. During

the scanning stage, a hacker scans a network to determine what systems are reachable.

The attacker implements various ping utilities such as fping or hping; port scanners

such as FoundStone’s SuperScan or ScanLine programs, or operating system detection

utilities such as amap or sinFP. Nmap, and its graphical version Zenmap, provides

all of these scanning capabilities in one package. NetCat is a unix-based tool which

provides these capabilities and more, but the Windows UDP scanner is unreliable [53].

Scanners work by sending basic ping requests in search of ping replies (for example,

sending a ICMP ECHO request to elicit an ICMP ECHO REPLY). A reply indicates

discovery of a host. Also, firewalls may block some of these types of requests as they

are detected.

Once a hacker identifies hosts which are alive, they focus scanning efforts to look

for open TCP and/or UDP ports on the systems. To do this, a hacker sends network

packets to ports on the host machine in order to elicit the appropriate response. There

are eight basic TCP scan types: TCP connect scan, TCP SYN scan, FIN scan, TCP

Xmas Tree scan, TCP Null scan, TCP ACK scan, TCP Windows scan and TCP

RPC scans. TCP connect scans are easily detectable, so hackers developed these

other “connectionless” scans. Some of the scans work in a standard way based on

their RFC, but others, such as the TCP FIN scan, TCP Windows scan and TCP

RPC scan respond in an operating system-specific way or do not work at all on some

operating systems. A UDP scan to an open port will result in no response and to a

closed port will result in an ICMP port unreachable message. [53]

20

Hackers can determine what operating system is installed on a machine. Some

of this “operating system fingerprinting” can be attained by observing which ports

were open on the machine; a Windows host typically listens on ports 135 and 139.

Fingerprinting is enhanced through sending a series of probes to open ports and

monitoring the feedback received from the ports. For example, an attacker may send

a FIN probe (a packet to an open TCP port with the FIN bit set). If the machine

is Windows NT, Windows 200X or Windows Vista, it will respond with a FIN/ACK

packet, which is not the standard response per RFC 793. Other probes look for the

use of “don’t fragment bit”, the TCP initial window size, the length of ICMP quoted

messages. Nuances in how an operating system handles TCP packets help an attacker

to fingerprint the operating system. This information is invaluable to narrowing the

scope of which vulnerabilities to search for.

2.2.3 Enumeration. Enumeration is the third stage of an attack, and is

characterized as targeted queries to a host’s ports in order to learn more about what

service is running on it. One way to enumerate services is through banner grabbing

through utilities such as telnet or netcat. For example, by attempting to open and

use a telnet connection to an open port discovered during the scanning step, a hacker

can monitor feedback from the target system to glean information about the service

running on the port (such as protocol and version). Nessus, a vulnerability scanner,

goes a step further. Nessus scans a system’s ports to determine what services are

running ion but also tell what specific vulnerabilities a system is susceptable to is the

Nessus program. Nessus is a vulnerability scanner, which roots out , and can even

Once a hacker finds a reachable system, the next goal is to determine which ports, pro-

tocols and services the system supports. This helps the attacker determine potential

vulnerabilities. [53] Other enumeration techniques include querying ports with FTP,

querying DNS information about a using nslookup (from a Windows machine), or

using native Unix utility programs such as finger (against Unix-based targets) or ls -d

¡domain name¿ to query DSN zone transfer information about a network. Enumera-

21

tion techniques exist for all sorts of specialized services such as NetBIOS, HyperText

Transfer Protocol (HTTP), RPC, Lightweight Directory Access Protocol (LDAP),

Structured Query Language (SQL); McClure lists enumeration for these services and

more in [53].

2.2.4 Gaining access. The next stage of an attack is gaining access. Once a

malicious party discovers a vlunerability on your system, there are many tools avail-

able exploit the weakness in order to gain access. Once such tool is MetaSploit [53].

A hacker need only browse through the MetaSploit vulnerabilities database through

the user interface, select a payload, set an option or two (e.g. target machine and

stealth settings), and the payload is launched as requested. Some payloads perform

a specific action such as adding an admin account, others provide a reverse shell con-

nection to allow the hacker to log on to the target machine with System privileges.

At that point, the target machine is pretty much at the whims of the remote user,

and the system should be considered completely compromised if this type of access is

detected.

2.2.5 Escalation of privilege. If gaining initial access is not enough to

accommodate the hackers goals, the hacker typically attempts to gain additional

privilege by accessing password databases using tools like ophcrack, Cain or other

password cracking tool, or by searching through files looking for passwords which

provide additional access [53].

2.2.6 Pilfering. Depending on the hacker’s goal, they may want to use

their initial breach as a stepping off point to deeper penetration. Pilfering involves

searching the network for additional passwords, trust relationships with neighboring

networks, or system vulnerabilities that may not have been visible or exposed to the

attacker prior to the breach. Tools such as Cain & Abel and simple file searching can

yield just the type of insider information the intruder needs to gain further access [53].

22

2.2.7 Covering Tracks. To prevent prosecution or to enable repeat visits

without arising suspicion from network administrators, a hacker may desire to cover

their tracks by attempting to erase the forensic evidence of their penetration. Covering

tracks may involve clearing logs, altering logs, or hiding tools through file streams or

rootkits [53].

2.2.8 Creating back doors. An attacker may leave behind back door pro-

grams which eases access for a repeat visit or monitors a target (e.g. via keylogging).

Simple measures such as scheduling a job to run after hours which opens a port on

the computer, or replacing an application such as calc.exe with a trojan version [53].

2.2.9 Denial of Service. If the goal of the attacker is to disrupt, degrade

or deny service, they may choose to launch a denial of service attack. Such an at-

tack may flood buffers, send malformed communication to cause a service to fail,

overwhelm system resources via distributed denial of service attacks. According to

Mcclure [53], “DDoS attacks are the most significant operational threat that many

online organizations face today.”

2.3 Sensors

In order to perceive elements within a target domain, sensors must be employed

within the domain’s environment which are capable of detecting and signalling the

occurrence of events. In the air domain, for example, the FAA employs weather and

flight radars, radios and a whole host of digital avionics sensors which are constantly

gathering and reporting data to decision makers: pilots, flight towers and ground

crews, in order to keep the skies safe. Likewise, sensors are employed in various ways

throughout the cyberspace domain.

There are essentially three categories of sensors needed to perceive event fea-

tures on a host in the cyber domain: files, input/output (I/O) streams, and process-

es/memory. Within operating systems, sensors take the form of software programs

23

which monitor resources such as memory, the central processing unit (CPU), and

network interface cards (NIC), reporting events such as page faults, network request

timeouts, and input/output errors. Sensors are also used to monitor the security of

the system, reporting events such as privilege escalation, successful or failed login

attempts, and noting when services are started/stopped. Finally, applications often

“sense” and log key application-specific events, such as when they are successfully

started or stopped, or when they complete or fail a noteworthy task, such as a “SQL

Server is now ready for client connections” informational message.

2.3.1 File Sensors. First, file sensors are needed. File sensors should

provide the ability to inspect a file’s contents and/or its properties, such as file size,

its checksum or hash, the date/time last updated or accessed, file size, access control

list, whether it is open or not, how often it is opened, what process/user typically

opens or updates it, fragmentation level, password strength as applicable, etc. Files

range from executable and data files such as notepad.exe or update.txt to operating

system and special files, such as event log files, registry files, or security account

manager files. Individual files may require highly specialized sensors or word parsers

to extract meaning. Examples of this sensor category on a typical Microsoft Windows

platform includes filemon, regmon, event viewer, or custom-built applications which

enumerate Active Directory Service Interface objects, query databases, or execute

various command line entries for directory listings and the like.

2.3.2 I/O Stream Sensors. Second, input/output (I/O) stream sensors are

needed. Typically, one thinks immediately of a network interface card (NIC) sensor,

such as Wireshark, for monitoring network traffic being transmitted to or from a

system or subnet. But there are numerous other I/O devices on a host, such as

USB devices, keyboards, mice, graphic cards, etc. These sensors should provide the

ability to inspect the I/O traffic contents and/or its properties, such as packet size,

protocols used, source and destination for messages, type of message, size of message,

or collective properties such as number of messages/second, volume of traffic, etc.

24

Figure 2.2: Types of intrusion detection systems and their related search spaces. [17]

2.3.3 Process and/or Memory Sensors. The third category of host-based

sensors needed is process and/or memory sensors. These sensors should be able to

enumerate the system’s memory contents, and/or its properties, such as memory

addresses, memory allocation, associated process(es), page fault rates, process owner,

number of threads, processor time, etc. Examples of this sensor category include

process monitor, task manager, and performance monitor.

2.4 Intrusion Detection Systems

In 1987, according to Denning, et al., [30] an intrusion detection system (IDS)

monitors network communication to determine whether activity is unusual enough to

suspect an intrusion. However, as Black highlighted [17] twenty years later, and as

covered in Section 2.4.1, there are now several types of IDS. An IDS can be deployed

as a hardware and/or software solution and either use signatures or heuristics for

detecting malicious threats, as discussed in Section 2.4.2.

2.4.1 Types of IDS. There are several types of IDS [17]: Network IDS,

Protocol-based IDS, Application protocol-based IDS, Host-based IDS and Hybrid IDS;

each provides a layer of protection, as summarized in Figure 2.2. A brief description

of each is provided.

25

A network IDS (NIDS) analyzes network packets as they are transmitted be-

tween systems [28]. Typically, NIDS are positioned at network boundaries, monitoring

traffic for malicious activity as it enters or leaves a network. When anomalies are de-

tected, a NIDS can take various actions, such as simply logging the event, alerting

administrators or coordinating with a firewall to deny the anomalous traffic. If prop-

erly configured, a NIDS is capable of detecting threats originating from outside or

from within the network such as (but not limited to) DNS spoofing, TCP hijacking,

port scanning, distributed denial of service and data exfiltration [28].

NIDS has a number of shortfalls when it comes to detecting intruder threats.

First, if an attacker obfuscates or encrypts the data they are transmitting, the NIDS

is reduced to analyzing packet headers only; the NIDS’ ability to detect malicious

activity within payload data is severely hampered at best [22]. Second, when it

comes to insider threats, the NIDS would serve as a last line of defense for traffic

leaving the network (and may not be configured to detect host-to-host activity within

the network). However, before network traffic is generated by an insider threat,

there could be readily available tell-tale signs within the affected computer(s) that

anomalous activity has occurred. Since a NIDS only monitors network traffic [28], it

has no access to the internal state of the surveilled machine (e.g. memory, process, file

or registry activity and system, security or application logs) of individual machines on

the network. A more introspective approach is needed for early detection of insider

threats within the malicious activity’s sequence of events.

A leading open source NIDS, Snort [64], is available for download from snort.org.

Snort was first released in 1998, and due to its open source nature, has had hundreds

to thousands of contributors refining the product and its rules ever since. With twelve

years worth of research and development, it is considered the de facto standard in

intrusion detection and prevention [64].

A Protocol-based IDS (PIDS) and application protocol-based IDS (APIDS) are

each similar to NIDS: they both monitor streams of inbound and/or outbound data.

26

A PIDS analyzes network packets traveling between systems via a specific port or

protocol. [28] For example, a web server system administrator may wish to employ a

PIDS to analyze traffic coming across port 80 (HTTP) or port 443 (HTTPS), looking

for malformed or malicious web-based queries such as mentioned in [41]: attempts to

cause buffer overflows via lengthy URL strings, attempts to inject execute arbitrary

code using magic URLs, or attempts to exfiltrate sensitive files from the web server

through directory traversal. NIDS tools such as Snort and Bro [44], perform protocol

analysis. An APIDS analyzes the communication via application-specific protocols.

For example, an APIDS could be loaded as middleware between a web server and a

back-end database server, analyzing SQL requests and responses for SQL injects and

cross-site scripting attacks [17]. Both PIDS and APIDS are limited scope intrusion

detection systems. They can protect portions of a system, but will not detect attacks

that happen outside their observable spaces.

A host-based IDS (HIDS) analyzes the activities of internal mechanisms [17]

of a single machine, e.g. its processes, memory, files and event logs to determine

the presence of anomalous activity (as opposed to a traditional antivirus program,

which looks for malicious signatures in files, email and memory [1] for malware).

Specifically, a HIDS monitors interactions with the host operating system, looking

for such things as abnormal processes or user activities which indicate the presence

of malware, unauthorized privilege escalation or other threats. To detect these types

of threats, raw forensic data observations such as system call sequences, file system

modifications, and user logon traces are preferred over higher-level data like event

logs whenever possible. The lower the level of data being analyzed, the deeper the

penetration has to be to avoid detection .

Defense Information Systems Agency’s (DISA) Enterprise-wide Information As-

surance and computer Network Defense Solutions Steering Group (ESSG) procured a

Host-based intrusion prevention system / host based firewall solution, which is dubbed

Host-Based Security System (HBSS). A commercial-off-the-shelf (COTS)-based ap-

27

plication written by McAfee, HBSS is to be installed on each workstation and server

in the DoD.

A hybrid IDS combines one or more of these IDS approaches. [17] While a stand-

alone HIDS has no access to another computer’s internals, some HIDS are configurable

for distributed defense, using information sharing to strengthen the collective defen-

sive posture. A NIDS teamed up with multiple host-based IDS is considered a hybrid

IDS, such as the open source project named Prelude [71].

2.4.2 Signature-based IDS vs Anomaly Detection. There are two main de-

tection methods an IDS employs: signature detection or anomaly detection. Each

method has its pros and cons, which is discussed.

With signature-based IDS, observed data is compared against tersely defined

rules modeled after known malicious activity. An IDS which employs this technique

can only be effective at detecting threats which it has been programmed to detect.

Examples of signature-based IDS methods include state transition modeling [42], and

expert systems which employ string/rule pattern matching [11].

There are a couple of main shortcomings of employing a signature-based IDS.

First, a signature-based IDS is unable to detect novel threats (for which it has not

been programmed), or even variants of known threats [46]. As quickly as a threat

signature is created and deployed, tens or hundreds of threat variants could be created

or unleashed. A signature-based IDS must be constantly updated with the latest

signatures to keep up with the most current threats.

The second shortcoming has to do with the feasibility of searching for known

vulnerabilities in near-real time. The number of known viruses discovered over the

last 20 years, as depicted in Figure 2.3, indicates an exponential growth trend. As of

May 25, 2007, this figure was just over 300,000 [67]. In April 2008, a Computer World

interview with industry experts [27] unveiled that number would surpass 1,000,000

viruses in 2009. While more recent figures are not yet available about how many

viruses exist, this latter projection supports the 20-year trend. The implication this

28

Figure 2.3: From 1986-2007, the number of known viruses indicates an exponential
growth trend [67].

29

has to a signature-based solution is that scanning against a signature database will

continue to take longer and longer, to the point of infeasibility in near-real time.

Anomaly detection involves using machine learning to train statistical models,

or classifiers, to recognize malicious or anomalous patterns, or classes, of activity. A

model is composed of a set of distinguishing features within the data which forms a

pattern to be recognized. The recognition of a pattern allows the classifier to properly

categorize data as one class of data or another. Applied to the IDS problem, one needs

to distinguish (at minimum) between normal and a malicious classes. A classifier can

be taught to recognize more specific classes of data as well, e.g. the attack vector, or

the type of normal user activity. Subclasses of this data can be defined with more

specific statistical models. This approach can be effective for detecting novel threats

depending on the strength of the classifier’s underlying model [48].

Anomaly detection algorithms are trained via one of three types of machine

learning: supervised, unsupervised and reinforcement learning. With supervised

learning, an expert provides labeled data to train the classifier directly. With un-

supervised learning, the system learns on its own what is considered normal activity,

and flags everything else as anomalous [11]. Unsupervised learning is considered more

appropriate than supervised learning for traffic classification because it does not rely

on pre-defined classes [16]. Reenforcement learning falls in between supervised and

unsupervised learning. With reinforcement learning, the classifier starts out trying to

figure out on its own what is considered normal activity, but is rewarded or penalized

by an expert for how effective the classifier was. This feedback is fed into the classifier

to enhance refine its model.

Like its signature-based counterpart, anomaly detection is not without faults.

Since statistical models are heuristic measures, and not perfect indicators, they result

in errors in the form of false positives and false negatives [17]. False positives classify

normal activity as malicious activity, which would then typically trigger a manual

review process by an system security expert. False negatives classify malicious activity

30

as normal behavior, which would allow an intruder’s activity to go undetected. The

whole anomaly detection game is to train a model which minimizes both types of

errors. There are three additional factors which cause problems for anomaly detection.

First, anomaly detection models are highly experiential. Since an exhaustive

training set is infeasible due to dimensionality, there will be malicious activity the

classifier has never been exposed to. This results in undecidable events which can be

misclassified by the underlying statistical model. Additionally, a model can become

biased if it is “overfit” to noisy data [49]. A model which overfits to a particular class

of data accepts less variance when trying to recognize said class in future data. Stated

another way, data of a particular class which does not closely match the trained model

is more likely to be misclassified as another class of data.

The second challenge with anomaly detection IDS is that malicious activity can

sometimes (intentionally or otherwise) closely resemble normal activity, close enough

that it does not appear anomalous to the classifier. Such is the case with “low and

slow” attacks, which fly below the radar of an IDS, against a computing target. Some

of these activities can be better distinguished by modifying the statistical model;

for example one can change which features comprise the model or add weighting to

features within the model to increase its overall effectiveness.

Third, anomaly detection classifiers may require maintenance similar to its

signature-based counterpart, in the form of periodic (or possibly continuous) re-

training in order to remain effective. The risk, especially with the latter approach, is

that a statistical anomaly-based IDS may unintentionally learn to accept more and

more anomalous activity as normal activity (or vice versa) over time, thereby allowing

a less detectable avenue of access by intruders. Periodic inspection and validation of

a classifier can help avoid classifier creep.

31

Figure 2.4: Endsley’s Situational Awareness Model [32].

2.5 Situational Awareness

While other works [31] [61] define situational awareness concepts, the most

pervasive and relevant situational awareness concepts in literature today are proposed

by Dr. Mica Endsley [32]. An overview of Endsley’s conceptual model of situational

awareness, and its applicability to the cyberspace domain, are discussed herein.

2.5.1 Endsley’s Model. The dominating definition of Situational Awareness

(SA) was proposed by Dr. Mica Endsley: “the perception of the elements in an en-

vironment within a volume of time and space, the comprehension of their meaning

and the projection of their status in the near future” [32]. The process which initi-

ates and refines SA (shown in Figure 2.4) involves sensing the environment, making

decisions, performance of actions, and feedback. While SA does not guarantee good

decisions, it is a precursor for decision making. SA is attained through various sources

of information.

32

2.5.1.1 Levels of SA. Coinciding with her definition of SA, Endsley

defines three levels of SA: perception, comprehension and projection [32]. Each level

of SA builds upon the previous.

• Perception is the most basic of the three levels, and is the ability to perceive

domain elements within time and space. Endsley [32] states that “limits in

perception (or attention to percepts) drastically hinder one’s ability to formulate

even the most basic understanding of one’s environment.” Applied to CSA, one

wants to be able to perceive cyber events taking place within the system or

across the network, e.g. “ip 123.123.123.123 is attempting an ARP poisoning

attack against 10.0.0.1.” To build this perception may require data from only

one sensor or data from a combination of two or more sensors. Without the

correct sensors and sensor data, a system will not be able to perceive the event.

• Comprehension builds upon perception; by integrating how people combine,

interpret, store and retain information, comprehension provides “operationally

relevant meaning” [32]. In the above example, suppose IP 10.0.0.1 was an email

server in the internal network. Certainly this knowledge provides a different pic-

ture than if the IP belonged to a web server in ourthe network’s demilitarized

zone (DMZ). If 10.0.0.1 belonged to an email server, it implies that the intruder

has been able to bypass one of the network’s routers, a firewall and perhaps a

proxy server. It implies much deeper penetration than if the server was some

publicly accessible asset. It also implies, perhaps, a much more malicious and

imminent intent to disrupt, deny, or degrade the network’s confidentiality, in-

tegrity or availability. It is important to note that specific domain knowledge

would be required to draw these conclusions. An expansion of domain knowledge

can only help to improve a system’s ability to comprehend the environment.

• Projection is Endsley’s highest form of SA; it is the ability to “anticipate or

forecast future events, allowing for timely decision making” [32]. Continuing

the illustration of the ARP poisoning attack on the email server, given that

33

the current state is perceived and comprehended, S.A. would use projection

to anticipate future states. Such an anticipation is necessary for determine

that whoever was at 123.123.123.123 was attempting to disrupt communication

capabilities as the first stage of a larger attack.

2.5.1.2 Attention. Endsley [33] also discusses the impact of working

memory and attention on SA. In human factors, a person can only pay attention to

so many things simultaneously. The same can be said for computers. Due to time,

memory and processing constraints, an SA system cannot always attend to all sensors.

Doing so would cause a system to become non-responsive, a self-imposed denial of

service. Instead one must pick and choose the most operationally relevant sensors to

attend. Distraction comes in the form of overloaded or interrupted processes, or from

attending to sensors or sensor data that does not provide as large of a cost benefit ratio.

Some sensor costs are processing time, processing power, noise and deficient trust

(errors of ommision/commission rates). The benefit is the value of the information,

e.g. its trustworthiness, successful perception rate and importance/relevance of the

data collected.

2.5.2 Cyberspace Situational Awareness (CSA). SA is applicable to every

operational environment (big or small) you can conceive of, and cyberspace is no

exception. Cyberspace Situational Awareness (Cyber SA, or CSA) is the applica-

tion of situational awareness to develop an understanding of the cyberspace domain.

Without some level of CSA, there is no hope of securing networks today and into the

future.

According to [39] [15] [66], CSA can be obtained by gathering and correlating

data simultaneously from multiple sensor inputs. Each sensor’s observations should

be compared against other observations along with a knowledge base, capturing the

relevant details about the event so that it can be analyzed for potential problems, and

reporting this information to a data repository. Today, this analysis is often done by

a human operator, and is typically a reflexive vice proactive act: to determine “what

34

just happened” vs “what is about to happen”. There are simply too many places to

look in today’s networks to obtain an accurate and timely site picture; there are too

many sensors and too many moving parts for a human to hunt them all down. Having

a single place to look for sensory output can streamline this process.

Once sensor data outputs such as system audit log entries are gathered into

a central repository, they need to be analyzed for potential threats as quickly as

possible. Without timely situational awareness, cyberspace security professionals will

be unable to adequately protect cyberspace resources. It should be apparent that

automation is a key enabler to attaining enhanced CSA.

2.5.2.1 CSA System Requirements. Okolica, et al. [57] propose a

framework of three overlapping activities are needed to develop an automated Cyber

SA system. First, they propose the system needs to develop a test environment which

provides real, timely, functional, scaled and heterogeneous sensor data that can be

correlated and fused. Second, the Cyber SA system needs to develop language(s),

consisting of cyberspace-relevant vocabulary and grammar, which can describe the

cyber environment at different levels of abstraction. Finally, a Cyber SA system

needs to integrate the adversarial narrative into the abstraction space.

2.5.2.2 NetD COP. An ongoing initiative at Air Force Research Labs

in Rome, NY is the Network Defense Common Operational Picture (NetD COP).

According to [23], the NetD Cop effort demonstrates “enhanced situational awareness

and visualization techniques for network defense”. The system is comprised of an

event correlation engine for cyber attack recognition (ECCARS) and a collection of

visualization tools (VIAssist, VisAlert and FlexViewer). The conclusion from this

demonstration was that the system is capable of providing and enhancing situational

awareness on live network discs [23]. One main piece to the NetD Cop is its Data

Extraction Utility (DEU), a client/server application which parses sensor information

fed to it from firewalls and intrusion detection systems. However, it should be noted

that the sensor inputs to the DEU is already processed (not raw) information, an

35

Figure 2.5: AFRL’s NetD COP Decision engines create high-level security alerts
with mission impact assessment from a variety of sensor and data inputs, using a
plug-in architecture [23].

abstraction/classification decision has already been made as to whether or not low

level forensic evidence is suspicious or not. Additionally, NetD COP is focused on

alerts based on network traffic and not on forensic evidence that may be present on

host systems which could indicate attack.

2.5.2.3 SAIL. Another existing architecture is Situational Awareness

Inference and Logic (SAIL). This system architecture proposes to provide higher-

level reasoning than other SA systems [12]. The model provides functionality in three

stages which loosely correlate to Endsley’s SA model. According to the author, all

other known SA systems developed (through publishing in 2009) leave too much of

the situation assessment and projection still with the human observer.

Largely based on formal logic, SAIL provides a controlled natural language

(CNL), designed to reduce ambiguity/vagueness) interface for accepting both data

streams and human inputs for sensor data. Figure 2.6 illustrates the SAIL architec-

ture, and is outlined as follows. Sensor data is collected and aggregated (summarized)

like other SA systems. The aggregate data is then fed to a semantic analysis layer,

which applies descriptive logics to map the data points through an ontology in order

to build a situation assessment. The act portion of Endsley’s SA model is performed

by SAIL’s alerter. As the name implies, the alerter notifies personnel of critical issues

it has reasoned about. (SAIL provides a manual query function as well.)

36

Figure 2.6: Baader’s SAIL system architecture [12].

While SAIL may be potentially adapted for use as an IDS reasoner, it has not

been applied to the cyberspace domain. SAIL relies upon a human operator to feed

it relevant features by which it can make inferences about the domain it monitors.

Although SAIL performs data aggregation and semantic analysis from raw data to

build inferences, it not does not use specifically apply CRISP-DM’s process to do so.

2.5.3 JDL Data Fusion Model. Another existing situational awareness

model is JDL’s data fusion model. The JDL’s data fusion model is maintained by

the JDL Data Fusion Group, and is reportedly [65] the most widely-used method for

categorizing data fusion-related functions. The JDL model provides a more bottom-

up data-centric approach than Endsley’s model. The JDL Data Fusion Model defines

five data fusion levels, as depicted in Figure 2.7.

• Level 0 - Sub-Object Data Assessment: estimation and prediction of signal/ob-

ject observable states on the basis of pixel/signal level data association and

characterization;

• Level 1 - Object Assessment: estimation and prediction of entity states on

the basis of observation-to-track association, continuous state estimation (e.g.

kinematics) and discrete state estimation (e.g. target type and ID);

37

Figure 2.7: Data Fusion Group’s Joint Data Library data fusion model for situa-
tional awareness [65].

• Level 2 - Situation Assessment: estimation and prediction of relations among

entities, to include force structure and cross force relations, communications and

perceptual influences, physical context, etc.;

• Level 3 - Impact Assessment: estimation and prediction of effects on situa-

tions of planned or estimated/predicted actions by the participants; to include

interactions between action plans of multiple players (e.g. assessing susceptibil-

ities and vulnerabilities to estimated/predicted threat actions given ones own

planned actions);

• Level 4 - Process Refinement (an element of Resource Management): adaptive

data acquisition and processing to support mission objectives.

2.5.4 INFERD. INformation Fusion Engine for Real-time Decision-making

(INFERD) [66] is another context-aware framework which has been applied to the IDS

problem. INFERD utilizes to the JDL model of as a measure of how well it provides

SA. INFERD is, in a nutshell, an alert correlation engine, which does not look at low

level host-based forensic evidence, rather, it relies upon a series of host-based network

sensors to decide between normal and malicious events. Stotz [66] makes no mention

38

Figure 2.8: The Cross-Industry Standard Process for Data Mining is a cyclic process
consisting of six phases [21].

of attending to host based sensors which monitor process metadata or internal system

events such as file I/O.

2.6 Knowledge Discovery and Data Mining

The goal of knowledge discovery and data mining (KDD) is to extract patterns

from data. There are a number of professional bodies dedicating to furthering data

mining research, some prominent ones are the Association for Computing Machinery

(ACM) Special Interest Group for Knowledge Discovery and Data Mining (SIGKDD)

and the Data Mining Group (DMG). The data mining concept is nothing new, people

have been doing it manually for centuries. However, as problems become more com-

plex and require more data, there is an increased need for digital processing to mine

data. A repeatable data mining process was established by the pioneers of the data

mining movement [21] to provide guidelines for how a data mining process should

flow, and is discussed in the next section.

2.6.1 CRISP-DM. The CRoss Industry Standard Process for Data Min-

ing (CRISP-DM) [21] outlines a six-phase cycle for data mining projects, as shown

39

Figure 2.9: Generic tasks of the CRISP-DM Phases. The Data Understanding
phase consists of collecting initial data, describing the data, exploring the data and
verifying data quality [21].

in Figure 2.8. CRISP-DM is intended to be industry-independent, tool-independent

and application-independent. The goal of CRISP-DM is to provide organizations an

understanding of the data mining process and provide a road map to follow while plan-

ning and carrying out a data mining project. The phases are business understanding,

data understanding, data preparation, modeling, evaluation and deployment. The

second phase, data understanding, “starts with initial data collection and proceeds

with activities in order to get familiar with the data, to identify data quality problems,

discover first insights into the data or to detect interesting subsets to form hypotheses

for hidden information” [21]. The hierarchical methodology defines each phase as a

set of generic tasks each consisting of a set of specialized tasks and finally process

instances. The generic tasks which make up data understanding are shown in Figure

2.8.

2.6.2 KDD Platforms. There are plenty of tools available for data min-

ing, ranging from open and free software to enterprise solutions costing hundreds

40

of thousands of dollars. A small sampling includes WEKA, RapidMiner, JDM and

MATLAB. First, Waikato Environment for Knowledge Analysis (WEKA)is an open

source Java project hosted by the University of Waikato, New Zealand. WEKA pro-

vide a graphical user interface called Explorer, which allows for interactive analysis

of datasets by building workflows, and the ability to build and test computer models.

WEKA has an API allowing for integration into developers’ Java programs as well.

Second and formally known as YALE, RapidMiner boasts more than 400 data

mining operators, and a “huge amount of visualization techniques (http://rapid-

i.com/content/blogcategory/38/69/). While RapidMiner is commercial software, it

offers a community edition and a Java API.

The third KDD platform Java Data Mining API is an effort to divorce the

technology from any particular vendor. However, it is not as mature as WEKA or

Finally, used in many universities and research laboratories, MATLAB (“Ma-

trix Laboratory”) is a commercial product developed in C and Java. MATLAB is

a powerful matrix manipulation tool which can be used for regression and classifica-

tion. MATLAB provides extensions, called toolboxes, allowing for specialized sup-

port. MATLAB’s neural network toolbox is used to test the performance of selected

features.

2.6.3 KDD Algorithms. Data mining algorithms apply machine learning

to extract patterns from observed data. There are three main forms of machine

learning: supervised, unsupervised and reinforcement learning. Each technique has

its pros/cons. The most direct form of machine learning is supervised learning [70].

Supervised learning involves learning a function from examples of its inputs

and outputs. Typically with supervised learning, an expert provides class labels to

each observation in the dataset, and a machine is then trained to recognize each class

based on its labels and prototypical feature values. This process is known also as

classification.

41

Figure 2.10: The perceptron is the basic unit of decision within a neural network
[35].

The next form of machine learning is unsupervised learning. Unsupervised learn-

ing involves learning patterns in the input when no specific output values (labels) are

supplied. A machine using this technique attempts to group data to

The final form of machine learning is reinforcement learning. Reinforcement

learning methods are based on iterative feedback which is used to maximize matching.

Effective reinforcement learning techniques balance exploration and exploitation; poor

results are obtained if too much emphasis is placed one one or the other.

2.6.4 Artificial Neural Networks. Also known as multi-layer perceptrons,

there are a number of artificial neural network (ANN) algorithms used for machine

learning, including associative memory, feed forward and back propagation ANN [40].

The simplest form of an ANN algorithm is a single perceptron, as shown in

Figure 2.10 [40]. Perceptrons, and all ANNs for that matter, are biologically inspired

from the way the human brain works. When a perceptron is provided enough “en-

ergy” through weighted inputs to meet the minimum threshold as established by the

sigmoid function (depicted downstream from the summation before arriving at the

next perceptron “y” in Figure 2.10), it “fires”, sending a 1 down the wire to the

next perceptron. Otherwise, it does not fire; it sends a 0 down the wire. Synaptic

weights ω0..n are used to imply relationships between inputs and the perceptron itself;

the higher the weight, the stronger the bond between the input and the perceptron.

42

Figure 2.11: An associative memory neural network is an ANN with exactly two
layers of neurons and two connecting layers of weights [35]

.

Weights are usually between 0 and 1, but can be assigned negative values for implying

inverse relationships between an input and the perceptron.

The purpose of an associative memory ANN (Figure 2.11) is, as the name im-

plies, to learn associations [40]. This network consists of two layers: an input layer

and an output layer. The input layer receives weighted inputs from the environment;

each input layer perceptron will either fire to signal each of the output layer percep-

trons or it won’t, again based on the sigmoid function. An associative memory ANN

is iteratively taught to recognize a particular pattern, and once trained, to recall the

pattern even when presented with incomplete or noisy data.

Multi-layer ANNs include one or more “hidden” (intermediate) layers of per-

ceptrons. These networks are capable of learning non-linear relationships, which are

likely to occur in a high-dimensional or complex space. A popular method for training

multilayer perceptrons is through back propagation. With back propagation, a net-

work is trained in two repeated phases: the forward phase and the backward phase.

43

Figure 2.12: An ANN consisting of three layers of neurons and two connecting
layers of weights. The middle layer is hidden as it is neither input or output [35].

In the forward phase, the signal is fed from each of the inputs straight through to the

output, without any adjustment of the synaptic weights. In the backward phase, the

output signal is compared to the desired output, and the error is propagated back-

wards through the ANN so that the synaptic weights can be fine-tuned [40]. Together,

the two phases make up a single epoch. Epochs are used to iteratively update the

performance of the neural network until it converges to a minimum mean squared

error.

2.6.5 Analyzing results. There are a number of ways to analyze the expected

performance of a classifier, prominent methods are through generating a performance

plot, a confusion matrix, or a receiver operating characteristic (ROC) curve.

2.6.5.1 Performance Plot. The performance plot provided by Matlab’s

Neural Network Toolkit [29], displayed in Figure 2.13, visualizes the mean squared

error of the neural network network, which indicates the expected accuracy the net-

work will have when classifying data. Initially, a network starts with a high MSE, but

as the network is trained, the MSE decreases (the network learns). The performance

plot consists of three lines, representing the mean squared error of three subsets of

44

Figure 2.13: Example of a performance plot, used to analyze the mean-squared
error of the classifier. A smaller mean-squared error indicates higher performance.
This plot indicates that the best performance (lowest MSE) for the neural network
was attained after nine training epochs.

45

Table 2.3: A confusion matrix is used to analyze the overall success rate of a
classifier by accounting for errors of omission and errors of commission.

O
u
tp

u
t

C
la

ss 1 771 (82.2%) 118 (12.7%) 11 (1.2%) 85.7% (14.3%)

2 0 (0.0%) 26 (2.8%) 0 (0.0%) 100% (0.0%)

3 0 (0.0%) 0 (0.0%) 5 (0.5%) 100% (0.0%)

100% (0.0%) 18.1% (81.9%) 31.3% (68.8%) 86.1% (13.9%)

1 2 3

Target Class

vectors from within training population provided: training vectors, validation vectors,

and test vectors, in a 60%-20%-20% split respectively. Training continues the network

is memorized or some minimum mean squared error requirement is met, which helps

to avoid overfitting /biasing the classifier to the specific data provided.

A confusion matrix, as shown in Table 2.3, illustrates a classifier’s accuracy

rates by tabulating correct and incorrect results. The 3x3 grid in the upper left of

the matrix indicates for each class, which items were classified correctly into the class

(the light gray cells), and which items were classified incorrectly (the medium gray

cells). Each of the cells (or bins) in this 3x3 grid include two numbers: the raw count

of observations which are in the bin, and its corresponding percentage out of the total

population. The column on the far right indicates, for each output class, the correct

commission rate, along with the error of commission rate in bold. The row at the

bottom indicates, for each target class, overall successful commission rate, along with

errors of omission. In Table 2.3, there were 118 mislabeled “Class 2” observations,

which contributed to output class 1’s 14.3% error of commission rate, and to the

target ”class 2” 81.9% error of omission rate.

The target class is the true label of the data, whereas the output class is what

the classifier labeled the data. The right column and bottom row hold summary data

46

Figure 2.14: Example of a ROC curve, used to analyze a classifier’s specificity
versus its sensitivity [29].

from the 3x3 grid, and the bottom right corner presents the overall accuracy of the

classifier. In this case, the classifier is expected to correctly identify 86.1% of future

observations, assuming the data which trained the network was not biased.

2.6.5.2 ROC Curves. The Receiver Operating Characteristic curve

(ROC) plot [29], illustrated in Figure 2.14 is a visualization of a classifier’s true

positive ratio (correct classification rate) charted against its false positive ratio (errors

of commission). A ROC curve demonstrates the tradeoff between how sensitive a

network is and how fully specified it is. A more accurate ROC curve more tightly fits

47

against the left and top edges of the chart; a less accurate test is indicated by a curve

which approaches the 45 degree line of the chart.

2.7 Data Sources

Due to privacy concerns, and to allow for comparable results, many researchers

use test data sets rather than using real, operational data. There are two main data

sets researchers in intrusion detection use, as well as test environments for those who

want to generate new data sets for their experiments.

2.8 Research Data Sets

Much of intrusion detection research community relies heavily upon comparing

results based on datasets from two research groups. Both data sets are network packet

captures taken during periods of normal activity and network attacks.

The first dataset was a set of tcpdump files created in 1998 (additional iterations

were created in 1999 and 2000) by a partnership between Massachusetts Institute of

Technology’s (MIT Lincoln Laboratory and the Defense Advanced Research Projects

Agency DARPA), called the “MIT/DARPA Intrusion Detection System Evaluation

datasets” or simply MIT/DARPA datasets. Both the MIT/DARPA 1998 and MIT/-

DARPA 1999 data sets have since been criticized for poor methodologies which biased

results [54], so much so that calls have gone out for researchers to stop using them as

benchmarks for IDS research [19].

The second widely-used IDS datasets were benchmarked by the KDD Cup in

1999. Unfortunately, as this data is an extracted subset of the MIT/DARPA ’98; it

faces the same scrutiny and pitfalls [18].

Because existing datasets do not provide host-based sensor data, and the desire

to have event-correlated network and host sensor data, a separate data set will need

to be generated to support the research performed for this thesis.

48

2.9 Summary

A literature review of many facets related to this thesis research includes the

study of intrusion detection systems and techniques, situational awareness and its

applicability to the cyberspace domain, along with knowledge discovery and neural

network methodologies. Upon a literature review of leading intrusion detection ef-

forts, it appears that a multi-sensor study of a system under attack has not been

attempted or documented for the purpose of performing host-based forensic feature

selection. This thesis applies knowledge discovery techniques specified by CRISP-DM

to identify relevant intrusion detection features, and validates these results by testing

and analyzing the performance of these features with an artificial neural network.

49

III. Methodology

In order to identify the forensic data which best indicates various stages of an attack

on a host, a series of controlled data collections are performed. The data is then

explored and analyzed for consistency and usability for identifying an event from the

collection via the CRISP-DM process illustrated in Figure 3.1. Selected features are

used to build a neural network to test the performance of the selected items.

This chapter outlines the research methodology used to study the ability of com-

bining behavior-based classifiers for detecting network attacks. First, is a description

of the data collection environment, followed by a explanation of how CRISP-DM’s

data understanding, preparation, modeling and evaluation steps are used to analyze

the forensic features for their relevance in detecting malicious host activity. Results

of this process are presented in Chapter four.

3.1 CRISP-DM: Data Understanding

The data collection environment, the “Cyberspace Situational Awareness Labo-

ratory” (CSA Lab), consists of a “black hat” computer and a “target” machine hosted

on a wireless network, as depicted in Figure 3.2. The target machine is a Windows

XP-based virtual machine which is outfitted with a selection of live forensic data

capture tools. The black hat machine is a Windows XP system (not a virtual ma-

chine), outfitted with a selection of well known scanning and exploit programs. Both

machines are Dell Latitude
TM

D630 laptops: a 64-bit hardware architecture with an

Intel R© Core
TM

2 Duo processor, 8GB of RAM, a 120GB hard drive and a wireless

network interface card (NIC). The host network provides all routing, domain name

resolution and Internet access. A specification of the relevant hardware and software

used is listed within this section.

3.1.1 Black Hat Client. The black hat machine is a workstation outfitted

with a number of cyber attack tools. During data collections, the black hat client

50

Figure 3.1: Data Understanding is one of the key phases of the CRISP-DM Process
Model [21].

Figure 3.2: The CSA Lab environment is comprised of two machines connected to
a wireless network, with Internet connectivity provided by the host network.

51

Table 3.1: The relevant software configuration for the black hat machine includes
a number of well-known scanning and exploit tools.
Machine Name BLACKHAT
Host Operating System Windows XP Service Pack 2
Applications Microsoft Office 2007 Professional, Mi-

crosoft Internet Explorer 7.0

Scanning & Exploit Tools

ping: Included with MS Windows XP, SP2
fping v2.2: www.kwakkelflap.com
ws ping v2.30: www.ipswitch.com
Zenmap v4.76: www.nmap.org
Nessus v4: www.nessus.org
DumpSec v2.8.6: www.systemtools.com
ShareEnum v1.6: www.sysinternals.com
MetaSploit v3: www.metasploit.com
PWDump v2.0.0-beta-2: www.foofus.net
FGDump v2.1.0: www.foofus.net
RegBack: www.microsoft.com
BO2K v1.1: www.bo2k.com

runs “cyber attack” scenarios as described in Section 3.1.2 and detailed in Appendix

C. The configuration of the black hat client is shown in Table 3.1.

3.1.1.1 Target Machine. The machine which performs the data col-

lections (referred to as the “target”) is a virtual machine instance of Windows XP,

Service Pack 2, running on top of a 64-bit Microsoft Windows 7 Enterprise host op-

erating system. VMWare Workstation 6.05 build-109488 provides the virtualization

support, which provides the capability of create an image of the machine’s state, as

well as the ability to quickly restore the machine’s state to the same baseline between

data collections quickly.

The target is outfitted with live forensic tools which monitor network, process

and file activity. During experiments, the target runs through scripted “Normal user”

activity scenarios as specified in Appendix B. Additionally, the target is subjected to

attack activity, using the scenarios as specified in Appendix C. Table 3.2 outlines the

software installed on the target.

52

Table 3.2: Configuration of the “target” machine. Sensors are annotated as either
transactional (t) or snapshot (s) sensors, as explained in Section 3.1.2.

VM Name TARGET

VM Configuration 2GHz Intel Core 2 Duo CPU, 2GB RAM, 30GB hard
drive, bridged ethernet adapter

Guest OS Windows XP Service Pack 2

Applications Microsoft Office 2007 Professional, Microsoft Internet
Explorer 7.0

Sensors

[t] logman.exe v5.1.2600.2180: Included with MS
Windows XP, SP2

[t] tshark.exe v1.2.4: Included with Wireshark
v1.2.4 [4]

[s] listdlls.exe v2.25: www.sysinternals.com [59]

[s] logonsession.exe v1.1: www.sysinternals.com
[59]

[s] pslist.exe v1.28: www.sysinternals.com [59]

[s] tcpvcon.exe v2.54: www.sysinternals.com [59]

53

3.1.2 Sensors. To capture forensic evidence on the fly, two types of sensors

are used: transactional sensors and snapshot sensors. As the name implies, trans-

actional sensors capture each transaction within the sensor’s purview. Transactional

sensors, once started, continue capturing data until they are halted, or until some

user-defined rule is met (such as time limit or file size thresholds). An example of

this type of sensors is tshark.exe [4], used to monitor a network device for inbound

and outbound network packets. Snapshot sensors capture, and provide raw and/or

summary data about a portion of the current system state or configuration. An ex-

ample of a snapshot sensor is SysInternal’s pslist.exe [59], which displays a snapshot

of process memory and processor utilization. System events which start and stop

between snapshots may yield no forensic evidence to a snapshot sensor of any sort.

Collection is performed in three stages: normal, scanning, and exploit collec-

tions. This helps to keep collection sizes manageable, and to provide distinct datasets

based on the purpose for the collection. The first steps to each collection involves en-

suring the target machine is set to its baseline configuration by loading a previously

established VM snapshot through the VMWare software, and launching the sensor

scripts. To launch sensors for each experiment in a repeatable and consistent manner,

Windows Script Host (WSH version 5.6), paired with DOS batch programming, is

used. A source code listing and a brief explanation of the sensor scripts are listed in

Appendix A.

The purpose of the normal collection is to generate a set of data which consists

only of typical user activity, devoid of scanning or other malicious activity. The

normal collection only involves performing actions on the target machine. During

this collection, summarized in Appendix B, the target machine runs through a series

of scenarios such as using Microsoft Office products, Internet Explorer and sending

and receiving email. The data set generated is used to provide a baseline forensic

data set to compare with the scanning and exploit collections.

54

The purpose of the scanning collection is is to generate a set of data which

consists of scanning and service enumeration events. The scanning collection involves

both machines, but the bulk of the activity is performed by the black hat machine.

As with other collections, the target machine launches the forensic sensors to start

the collection process. Then the black hat machine is used to run through a series

of scanning enumeration activities against the target machine, such as using ping,

Nessus and Nmap. The data set generated is used to provide a better understanding

of forensic evidence generated by a scanning event versus normal activity.

The purpose of the exploit collection is is to generate a set of data which con-

sists of attempts to gain access, elevate privileges, plant back doors and to cover

tracks. The scanning collection involves both machines, but the bulk of the activity

is performed by the black hat machine. As with other collections, the target machine

launches the forensic sensors to start the collection process. The black hat machine

is used to run through a series of exploit activities against the target machine, such

as using Metasploit to launch various exploit payloads at the target machine, using

regback, pwdump and fgdump, and other tools to exfiltrate data, and using back

orafice to launch a keylogger. The data set generated is used to provide a better

understanding of forensic evidence generated by a various exploitation stages within

an attack sequence.

Each dataset consists of outputs from the six sensors listed in Section 3.1.1.1,

with potentially thousands of files to parse through. Each tool generates specific

forensic data features. Each feature generated is initially considered a candidate for

providing separation between normal and malicious activity, in order to identify as

many effective features as possible.

Process Overview Sensor. In order to capture summary process

data, such as memory utilization, user and system time, number of threads and han-

dles, SysInternals’ pslist.exe (version 1.28) [59] program is used. Running this tool

from the command line with the −x parameter provides process ID, process name,

55

user and kernel time, counts of threads, handles, context switches and various mem-

ory statistics. This tool is categorized as a snapshot sensor. By adding −s − r2

parameters, a snapshot is obtained every two seconds; this data is streamed directly

to an output file from the console. While pslist.exe is present in digital forensics

research [9] [10] [68], no literature has presented itself which persists tool outputs to

a central data repository in order to farm for features to use in classification. Each

feature produced by the tool is therefore considered a candidate feature for identifying

malicious activity.

Table 3.3: “Process Overview” sensor features which are

evaluated for effectiveness in distinguishing between nor-

mal and attack events.

“Process Overview” Sensor Features evaluated

Field Name Description

priority Lowest priority thread for PID

threadCount Count of thread for PID

handleCount # File handles for PID

cpuTime CPU time for process

workingSet Working set memory used by process

vMem Virtual Memory (VM) for PID

privateVMem Private VM used by PID

privateVMemPeak Private VM Peak for PID

faults Page Faults encountered by PID

nonpagedPool Nonpaged Pool cache size

pagedPool Paged Pool cache size

∆ priority Since previously polled

∆ threadCount Since previously polled

∆ handleCount Since previously polled

Continued on Next Page. . .

56

Table 3.3 – Continued

Field Name Description

∆ cpuTime Since previously polled

∆ workingSet Since previously polled

∆ vMem Since previously polled

∆ privateVMem Since previously polled

∆ privateVMemPeak Since previously polled

∆ faults Since previously polled

∆ nonpagedPool Since previously polled

∆ pagedPool Since previously polled

Network Packet Sensor. To capture network packets being sent to

and from the host system, the console version of WireShark, tShark.exe (version 1.2.4)

[4] is used. TShark was chosen over its GUI (GUI) counterpart (wireshark.exe), due

to the fact that it provides the same data with a lighter impact to system resources.

This tool is categorized as a transactional sensor.

Since the aim is to identify host-based intrusion detection-relevant forensic data,

only packets destined for the target machine - packets sent specifically to the host

machine plus broadcasts to the machine’s subnet - are monitored. The protocols

specifically evaluated are TCP, UDP, ICMP, ARP traffic. Relevant fields captured

include, but are not limited to those listed in Table 3.4. There are a number of

digital forensics research efforts which utilize packet capture files [38] [36] [46]. The

features and methodologies vary from signature detection to anomaly detection, but

Haag [38] and Gonzalez [36] both focus on the elements found within protocol headers

and packet-level metrics, which is where this research effort spends some of its focus

with regard to network traffic features. Additionally, this research looks at volumetric

data such as number of bytes sent/received per protocol.

57

Table 3.4: Some of the “Network packet sensor” features

which are evaluated for effectiveness in distinguishing be-

tween normal and attack events.

“Network Packet Sensor” Features evaluated

Field Name Description

Inter-Arrival Time Average Time between packets

Window Size Average From TCP header

Payload Size Average in bytes

Protocol Packets Count packets by protocol

Local Ports Count distinct ports with communication

Packets Count count of packets

Flags Counts TCP Flags, UDP/ICMP/ARP

Codes

Process Dlls Sensor. To help with the mapping of processes,

and which dynamic-linked libraries (DLL)they are associated with, SysInternals’ list-

dlls.exe (version 2.25) [59] program is used. This tool is categorized as a snapshot

sensor. While listdlls.exe is present in digital forensics research [68], no literature has

presented itself which persists tool outputs to a central data repository in order to

farm for features to use in classification. Features in Table 3.5 were selected based on

intuition that they may prove good indicators for identifying malicious activity. Fea-

tures related “abnormal dll” rely upon comparisons with a baseline “normal” activity

capture.

58

Table 3.5: “Process Dlls” sensor features which are eval-

uated for effectiveness in distinguishing between normal

and attack events.

“Process Dlls Sensor” Features evaluated

Field Name Description

#DLLs Count of DLLs loaded

∆ DLL Count Count difference since last polled

Checksum changed Boolean, change detected since last polled

Abnormal DLL Count Based on normal activity

Abnormal DLL Count Delta Based on normal activity

Process to Ports Sensor. To help with the mapping of data

between network captures and event trace logs, SysInternals’ tcpvcon.exe (version

2.54) [59] program is used. This command line tool provides a listing of ports and their

associated processes. This tool is categorized as a snapshot sensor. While tcpvcon.exe

is present in digital forensics research [20] [10], no literature has presented itself which

persists tool outputs to a central data repository in order to farm for features to use

in classification. Features were selected based on a suspicion that they may be good

indicators for identifying malicious activity. Features related “abnormal port” rely

upon comparisons with a baseline “normal” activity capture. Table 3.6 lists features

evaluated for effectiveness in distinguishing between normal and attack events.

59

Table 3.6: “Process to Ports” sensor features which are

evaluated for effectiveness in distinguishing between nor-

mal and attack events.

“Process to Ports” Sensor Features evaluated

Field Name Description

Local Port Local port associated with PID

Protocol Local port associated with PID

Remote Port Local port associated with PID

Local Addr is FQDN Boolean, Local address specified as work-

group.machine

Local Port Recognized Based on Windows XP services file

Remote Port Recognized Based on Windows XP services file

Remote Addr is Self Remote address is self

State Boolean sparse matrix: Close wait, estab-

lished, listening

State Changed State changed since last polled

Abnormal Port for Process Boolean, based on normal activity

Process to Session Sensor. To capture who is logged on at

a point in time and what processes a user “owns”, SysInternals’ logonsessions.exe

(version 1.1) [59] program is used. This tool is categorized as a snapshot sensor.

While logonsessions.exe is present in digital forensics research [50], no literature has

presented itself which persists tool outputs to a central data repository in order to

farm for features to use in classification. Features were selected based on a suspicion

that they may be good indicators for identifying malicious activity. Features related

“abnormal port” rely upon comparisons with a baseline “normal” activity capture.

Table 3.7 lists features evaluated for effectiveness in distinguishing between normal

and attack events.

60

Table 3.7: “Process to session” features which are eval-

uated for effectiveness in distinguishing between normal

and attack events.

“Process to session” Features evaluated

Field Name Description

Processes Number of processes tied to session

∆ # Processes Change since last polled

Logon Type Boolean Sparse Matrix: Interactive, service,

etc

Authentication Package Boolean Sparse Matrix: NTLM, negotiate

Account Type Boolean Sparse Matrix: System, local,

anonymous, etc

Event Trace for Windows Sensor. In order to capture events

each process handles during experiments, Event Trace for Windows (ETW) is used to

generate event trace log (ETL) files. This transactional sensor can be configured via

Performance Monitor, using the default system provider as shown in Figure 3.3. To

start and halt a tracelog capture, the logman.exe (version 5.1.2600.2180) command

line utility which ships with the Windows XP operating system is used. While event

trace for windows is present in digital forensics research [14], which had shown some

promise for use in anomaly detection, but no discussion of feature analysis was men-

tioned. No other literature presents itself which persists tool outputs to a central data

repository in order to farm for features to use in classification. Features were selected

based on a suspicion that they may be good indicators for identifying malicious ac-

tivity. Table 3.7 lists features evaluated for effectiveness in distinguishing between

normal and attack events.

61

Figure 3.3: Use Performance Monitor to configure the event trace capture. For
captures, the default system provider is used with all capture options selected.

62

Relevant fields captured from the event trace sensor include, but are not limited

to those listed in Table 3.8.

Table 3.8: Event Trace for Windows features which are

evaluated for effectiveness in distinguishing between nor-

mal and attack events.

Event Trace for Windows Features evaluated

Field Name Description

Operations Count of events

Event IAT Avg Event Inter Arrival Time

Tot User Time(ms) Sum User time (in milliseconds)

Tot Kernel Time(ms) Sum Kernel time (in milliseconds)

threads at work Count Unique threads performing operations

Bytes In Sum Bytes Received (TCP/UDP Events)

Bytes Out Sum Bytes Sent (TCP/UDP Events)

Disk IO Read Count of events

Disk IO Write Count of events

File IO Create Count of events

File IO Name Count of events

Page Fault CopyOnWrite Count of events

Page Fault DemandZeroFault Count of events

Page Fault HardPageFault Count of events

Page Fault TransitionFault Count of events

Process End Count of events

Process Start Count of events

TcpIp Disconnect Count of events

TcpIp Reconnect Count of events

TcpIp Retransmit Count of events

Continued on Next Page. . .

63

Table 3.8 – Continued

Field Name Description

TcpIp Send Count of events

TcpIp Recv Count of events

TcpIp end Count of events

Thread End Count of events

Thread Start Count of events

Thread End Count of events

Thread End Count of events

Thread End Count of events

UdpIp Send Count of events

UdpIp Recv Count of events

Other Event Count of events not listed above

Abnormal Ports accessed Based on “Normal” data capture

Abnormal Files accessed Based on “Normal” data capture

3.1.3 Sensor View of System. In Figure 3.4, an abstract view of the foren-

sic segments of a Windows XP Workstation, and the coverage of these segments by

the sensors selected is shown. First, the diagram reflects that TShark.exe monitors

network activity. Then, pslist.exe and listdlls.exe provide meta data about running

processes and their associated dlls. Next, ETW provides events pertaining to file and

registry accesses (among other things). Additionally, PSloglist provides the capability

to export system, security and application logs. LogonSessions.exe provides infor-

mation pertaining to active sessions and the processes associated to them. Finally,

TCPVCon provides a way to relate port activity with process information gathered.

This coverage is desired in order to cast a wide net around potential features which

may indicate malicious activity.

64

Figure 3.4: Forensic segments of a Windows XP workstation, and the sensors which
can monitor them.

65

3.2 CRISP-DM: Preparation

To describe and explain the data, a framework for parsing the sensor data in a

consistent and repeatable way is developed in Java. Since each sensor’s output is spe-

cific, a distinct parser exists for each sensor. Parsing data from the selected snapshot

sensors is relatively straightforward, as the outputs are already in human-readable

form (text). Each of these sensors produces structured output which can be parsed

in a consistent manner. However, each of the selected transactional parsers generate

binary files (ETL and PCAP files), which need to be parsed with the assistance of

some other means before they can be read. Tracerpt.exe is used to translate ETL

data from its raw form to text before attempting to parse and analyze the data. To

parse the network packet data captured by tshark.exe, an open source Java SDK

called jNetPcap [3] is used. jNetPcap is a Libpcap/WinPcap wrapper, so it is capable

of parsing data produced by any packet capturing application which is built upon

Libpcap/WinPcap, such as WireShark and tshark. The jNetPcap API is included in

the parsing framework specifically for this purpose.

As mentioned previously, sensors are classified as either transactional or as snap-

shot sensors. A transactional sensor class was developed for each of the transactional

sensors, which include summarizing methods in addition to the above listed methods.

3.2.0.1 Snapshot Parsers. Each transactional parser implements the

I SnapshotParser interface in Java shown below; each class implementing this interface

must provide the capabilities listed here. Parameterized templates are used, denoted

by T in the source code listing below; an implementing class must provide these

methods, plugging in its own class name in place of the T operator. This method

provides for extensibility for plugging in additional sensors to the framework later on.

package model.parser;

import java.io.File;

import java.util.ArrayList;

import model.ForensicDate;

66

public abstract interface I_SnapshotParser<T>

{

public abstract ArrayList<T> parse(File f);

public abstract ArrayList<T> getObsByFTW(ArrayList<T> arr, ForensicDate ftw);

public abstract void exportToCSV(ArrayList<T> arr, String s);

public abstract ArrayList<T> fillGaps(ArrayList<T> arr);

public abstract String getCSVHeaders();

public abstract String toCSV();

}

3.2.0.2 Transactional Parsers. Each transactional parser implements

the I TransactionalParser interface in Java shown below; each class implementing this

interface must provide the capabilities listed here. Parameterized templates are used,

denoted by T in the source code listing below; this delegates the class to implement

a class-specific function, plugging in their own class name in place of the T operator.

package model.parser;

import java.io.File;

import java.util.ArrayList;

import model.ForensicDate;

public abstract interface I_TransactionalParser<T>

{

public abstract ArrayList<T> parse(File f);

public abstract ArrayList<T> filterByFTW(ArrayList<T> arr, ForensicDate ftw);

public abstract void exportToCSV(ArrayList<T> arr, String s);

public abstract String getCSVHeaders();

public abstract String toCSV();

public abstract T summarize(ArrayList<T> arr);

public abstract ArrayList<T> buildExemplars(ArrayList<T> arr);

}

67

3.2.1 Data Alignment. In order to build a forensically diverse observation

which includes data from all the sensors, a search of related features is required. Recall

from Figure 3.4, the forensic coverage of the selected sensors has a little overlap;

overlapping features are used to relate sensors from two or more sensors together as a

single combined observation. Three elements are used to align data between sensors:

Process ID, Local Port and Forensic Time Window.

Process ID. Each selected sensor, with the exception of the

network packet capturing sensor, includes process id (PID) in their outputs. Unfor-

tunately, four of these sensors capture snapshots only, and are unable to see processes

which start and end between snapshots. Luckily, ETW captures process start and

stop activity, as well as which executable file the process id is associated with; this

information is used to partially fill forensic data gaps between snapshots. Because the

Process ID is assigned at run time by the operating system, and is not guaranteed to

map to an executable between captures, a standard process id (SPID) field is created.

The SPID is an integer assigned to a specific executable which is observed in at least

one of the captures, and becomes the key by which data is normalized later in the

process.

Local Port. Tying network data provided by tshark to the process

data is a bit of a challenge. Although tcpvcon.exe provides PIDs and their associated

ports, it is a snapshot sensor, and subject to the same problem as other snapshot

sensors. Fortunately, ETW once again provides a means to fill in some of the forensic

data gaps between snapshots. FTW captures summary information about UDP and

TCP events (by PID); this information is used to identify traffic which occurs between

snapshots.

Forensic Time Window. Another data alignment consideration

is timing. Because snapshot sensors are executed one after another, there are dis-

crepancies in the collection times for the “current” snapshot of a process. This is

68

addressed using forensic time windows (FTW), two-second time frames by which a

process’ or port’s activity can be summarized. Shilland [62] takes this approach to

account for variations in code speed on a MANET (MANET) IDS. Since collections

are performed on one machine using a single computer’s clock to track time, it is as-

sumed time synchronization issues which arise from distributed systems [45] are not

an issue.

3.2.2 Feature Selection. In order to perform some of the analysis, the

parsed data is stored in a Microsoft SQL Server 2008 Server, Express edition. Data

is uploaded en mass for labeling, normalization and for performing feature analysis.

Data is initially affixed with two labels per observation en mass according to its

temporal proximity to a known event within a scenario. The first label is a category

label, which is either “normal”, “scanning” or “attack.” The second label is an attack

stage label, which is either “normal” or the generic name for an attack stage such as

“planting back door” or “privilege escalation”. Although it is known what activity

takes place at a particular time t, it is unknown what low level impacts the activity

has on other processes, such as causal relationships and interprocess communication.

Therefore, all evidence collected at the time stamp is labeled similarly.

Once collected and labeled, the data understanding portion of the research be-

gins. Again, the goal of refining data understanding is to selectively determine features

from data collections which may help to distinguish malicious activity from normal

activity. Because malicious activity comes in many forms, an attempt to correlate

each feature to specific types of malicious activity: scanning, enumerating, gaining

access is performed. And, because the intent is to pass these features over to a neural

network for classification, a feature does not need to singularly and deterministically

identify the class. However, a relevant feature is one which should generally provide

some separation between classes.

With this in mind, features are identified using one of two methods: “Set dis-

tinction” and “Abnormal measures.”

69

3.2.2.1 Set Distinction. The first method for identifying features is

through set distinction. Datasets of distinct values occurring within a candidate

feature are built using Transact SQL (T-SQL); one set is generated for each class of

data to classify. From this, more T-SQL statements are executed to identify which

values only occur in one collection or another. Results from this process are then

manually examined to determine if the presence of a particular value is a matter of

coincidence (actually part of normal operations) or appears correlated to a specific

event or set of events. Items which appear correlated to a specific event are researched

in literature to determine if the value has significant meaning to the event. From this,

a decision is made to include the discovery of this value as a feature for HIDS or not.

3.2.2.2 Abnormal Measures. For features which rely on measures (e.g.,

counts of event x or ∆ measures), an analysis of the distribution of the datapoints

is performed. To do this, sample statistics are taken for each observed variable,

namely its mean x̄ as shown in Equation 3.1, sample standard deviation s as shown

in Equation 3.2, skewness skew as shown in Equation 3.3 and kurtosis kurt as shown

in Equation 3.4. These measures will help us to determine each variable’s potential

value toward separating classes of data.

The sample mean, x̄, provides an average of all values within the sample, and

is given as:

x̄ =
n∑

i=1

xi

n
(3.1)

Standard deviation, s, is a measure of the average difference between each data

point and x̄, and is given as:

s =

√∑n
i=1(xi − x̄)2

n− 1
(3.2)

70

Skewness describes the level of asymmetry of the distribution of a random vari-

able with regard to its mean. Positive skewness indicates a distribution with an

asymmetric tail extending toward more positive values. Negative skewness indicates

a distribution with an asymmetric tail extending toward more negative values. The

formula for the skewness consists of sum of the deviations from the mean divided by

standard deviation on the third degree.

skew = n/(
n− 1

n− 2
) ∗

n∑
i=1

(
xi − x̄

s
)3 (3.3)

Kurtosis characterizes how flat or noisy a distribution is when compared to the

normal distribution. Positive kurtosis indicates a peaked distribution, while negative

kurtosis indicates flatter distribution. Kurtosis is the sum of the deviations from the

mean divided by standard deviation to the fourth power.

kurt =
1
n

∑n
i=1(xi − x̄)4

1
n

∑n
i=1(xi − x̄)2

− 3 (3.4)

Upon completion of the attack sequence, forensic data is aggregated from each

sensor on the Sensor client into two-second time intervals, grouped by key fields such

as process id or local port number. Each time interval is assigned an ID which

corresponds with the start date and time of the interval. Each record in the time

interval is grouped by its key fields, and the remaining fields of interest are summarized

via aggregation functions (averages, summations, deltas, mean, standard deviation

and kurtosis) as they relate to the key fields.

3.2.3 Signature-Based Feature Identification. The first method used to

generate features is performed by identifying the presence or absence of suspicious

signatures within the forensic data. This method is implemented on variables which

have no numerical measurement, e.g. string-based variables whose literal value has

meaning in its own right.

71

From each class of labeled data to identify (e.g., ’normal’, ’scanning’, ’exploit’),

a set of unique observations is built. Items which only occur within a single class,

or occur relatively infrequently in other classes, become candidate class signatures.

For each candidate class signature, a mechanism next interprets the relevance of

the item’s meaning with regard to the temporality of the observation within the

dataset in question. The researcher evaluates each candidate signature independently

to identify what data and/or capabilities the file provides, and the inferred meaning

of accessing the file at time t. Additionally, the human operator compares instances

of the signature detected against collections to determine if the item is a coincidental

instance or correlated instance to the activity at the given point in time. Finally, if

an item is deemed relevant to the class of data to identify, it is added as a feature to

look for within future collections. Validation of these features includes attempts to

produce the signature in a data collection through the performance of valid actions.

3.3 CRISP-DM: Modeling and Analysis

An artificial neural network (ANN) is used to model the data set of selected

features. Each observation is formatted appropriately for use with the MATLAB

Neural Network Toolbox, to include the observation’s true classification label and a

vector of the selected features. The input data is split into two groups, populated

via monte carlo sampling [58]: two-thirds for training and one-third for testing. The

ANN is trained via back propagation using varying training parameters:

• Learn Rate: vary from 0.01 to 0.2

• Activation Function: vary between tansig, logsig [29]

• Number of Hidden Layers: vary from 1 to 3

• Number of Neurons in Hidden Layers: vary from 3 to 30

• Target Accuracy Rate (MSE): 0.0001

• Maximum Epochs: 1,000

72

Once the ANN training phase is completed, the ANN is used to classify the

testing data set. A ROC Curve Plot and a confusion matrix are both used to interpret

the classification accuracy of the ANN model.

3.4 Summary

A research methodology is now laid out by which to study the feasibility of

behavior-based classifiers for network attacks. An understanding of research goals and

hypothesis, a description of the development and test environments, and a description

of the experiments along with assumptions and limitations, is critical for anyone

intending to duplicate or continue this research. The results of the experiments can

be found in Chapter four.

73

IV. Results & Analysis

The data collections were performed in three phases, and produced three datasets:

Normal, Scanning and Exploit. Table 4.1 provides a summary of these collections in

terms of execution time, number of files generated and cumulative raw data size.

4.1 Signatures Discovered

Collection analysis identified seven specific items that correlated well with the

events occurring at the time and provided discrimination between normal and attack.

Each feature was discovered independently by performing data discovery activities on

the data, querying data for correlation between events and observations within the

data. Six of the seven features are attributed to File IO activity, the seventh is a

measure of port activity. Admittedly, a few of these features may not perform well in

environments which differ wildly from the environment used in this research.

1. High count of local ports with activity. In general, 20 or more distinct active

ports indicated the presence of port scanning activity within the data collected.

This feature is a volumetric measure against normal activity, which peaked at

25 active ports while in normal stage [17], web surfing. The threshold can be

set higher, but at the risk of producing more false negatives within the data.

Additionally, it is completely feasible to be scanned via low and slow scanners,

which would not report above the threshold established. This is a problem

which plagues many anomaly detection systems. Lower level protocol analysis

would be required to more definitively identify scanning activity as a signature,

Table 4.1: Summary of Collection times, number of files and the amount of raw data
generated. Collection times are intended to simulate a long period of probing followed
by a direct and quick set of exploits which take advantage of learned vulnerabilities.
Collection Minutes Files Raw Data Size
Normal 41 mins 2803 1.18 GB
Scanning 40 mins 2561 904 MB
Exploit 9 mins 244 131 MB

74

but signatures of activity are not without error. As shown in the collection, a

high incident of false positives resulted from protocol analysis using signatures.

2. File IO activity involving a /mailslot/. Mailslots [60] support unreliable unidi-

rectional data transmission, and support the capability to receive broadcasts;

however, a valid application for /mailslot/ activity is time synchronization. The

collections performed did not include a time server, so results may be biased for

this reason. Only four events across all collections yielded /mailslot/ activity,

two events had four counts of this activity and four events were attributed to

times when the attacker was using a remote connection to execute commands

on the target machine. Two events had one count of this activity, which is tied

to a specific tool, covered next.

3. File IO activity involving /mailslot/Nessus. Two events related to Nessus vul-

nerability scanning involved this activity. As mentioned previously, mailslots

provide a way for receiving broadcasts. Nessus may use mailslot broadcasts

when looking for vulnerabilities across a number of machines on the same net-

work or subnet.

4. File IO activity involving /mup/. Multiple Universal Naming Convention (UNC)

Providers (MUP) [60] are device drivers which field input/output requests to

files or devices that are exposed to the network via UNC. 23 instances of MUP

signatures occur across seven events from the attack collection, and nowhere else

in any other collection. Valid MUP usage include accessing a shared directory

on the target system. However, since the test operates under the assumption

that UNC shares are disallowed by policy on a workstation, MUP should not

be seen through normal usage.

5. File IO activity involving net.exe Net.exe and net1.exe each provide networking

services via the command line. However, more than two-thirds of all net.exe

and net1.exe calls made happened during two events in the capture, one where

metasploit’s adduser payload was launched at the target, the other when an

75

attack script created a network drive connection back to the attackers machine.

This feature obviously cannot be used by itself, as there are a number of valid

user situations where net.exe may be used; an alert based solely on this would,

over time, result in a high incidence of false positives.

6. Authentication File Dump Feature This is a composite condition, where one

of the following was noted in File IO activity: regback, lsadump, cachedump,

fgdump-log. Presence of each of these strings was related to at least one of the

attempts to exfiltrate passwords, but is tied to specific tools. System adminis-

trators may have reasons for wanting to run these utilities, but the typical user

should not be running these applications.

7. Remote as System feature This string is the most interesting of them all, it in-

volves an embedded string encoding of the System account’s session id (which

is hard-coded into the operating system as decimal 999, or 0x3e7). A typical

string that would trigger the remote as system feature is:

“\Device\LanmanRedirector\;P:00000000000003e7\blackhat\shareddocs\exploit\”
Originally, the feature selected was:

“\device\lanmanredirector.”

However, this proved a poor performer, since a valid user with a session on the

machine can trigger that rule by accessing any of their connected drives. In

fact, the user’s session id would be present where the system session id is in the

sample string above. The correlation between this string and events at the time

indicate that its presence signifies remote access to the machine with System

credentials.

4.2 Neural Network Results

The seven features identified within the data were used to train a neural network

using back propagation. Data was split into two groups, populated via monte carlo

sampling [58]: two-thirds for training and one-third for testing. The training data

was used to train the neural network with learn rates ranging from 0.1% to 2%,

76

Table 4.2: Upon simulating the trained network against unbiased test data, results
show the the features selected perform very well to identify normal and malicious
activity.

O
u
tp

u
t

C
la

ss Normal 885 (95.1%) 2 (0.2%) 0 (0.0%) 99.8% (0.2%)

Scanning 0 (0.0%) 32 (3.4%) 0 (0.0%) 100% (0.0%)

Exploit 0 (0.0%) 0 (0.0%) 12 (1.3%) 100% (0.0%)

100% (0.0%) 94.1% (5.9%) 100.0% (0.0%) 99.8% (0.2%)

Normal Scanning Exploit

Target Class

and with various activation functions (e.g., tangent sigmoid or log sigmoid activation

functions [29]), a limit of training 1000 epochs, and a MSE goal of 10−4. Seven input

neurons made up the input layer, corresponding to the seven features. Three output

neurons made up the output layer, corresponding to the number of classes to identify.

Various hidden layer attributes were used, varying between 1-3 hidden layers, with

5-20 neurons per layer. Multiple iterations were accomplished using new training

and testing groups. Results from performance analysis consistently settled to 10−2 or

better. The best parameters for training this neural network appear to be using two

hidden layers, with 3, then 7 neurons, respectively. The performance plot in Figure

4.2, ROC curve plot in Figure 4.2, and confusion matrices in Table 4.2illustrate these

results.

The selection of port counts with activity was not an effective feature with

regard to a neural network. If a rule is established to signal an alert when a machine

has 25 or more connections, the datasets collected would have yielded only 3 false

alerts, but would have identified 100% of the Nessus and NMAP scanning events.

Second, the identified signatures which indicate malicious activity (other than

scanning) may also be either present or not present; errors arise when feeding these to

77

Figure 4.1: The mean squared error of the trained neural network-based classifier
consistently converges to a MSE of 10−3.5 or better, which indicates the features
selected perform very well overall for classifying normal and malicious host-based
activity within the collections gathered.

78

Figure 4.2: Upon simulating the trained network against unbiased test data, results
show the features selected perform very well to identify normal and malicious activity.

79

a neural network since the incident rate may be too low for the network to learn. A

larger collection would be necessary, along with more training in order to learn these

features. However, if the features identified from labeling data as malicious when

there may be a low normalized number in the data.

4.2.1 Alerts Triggered: Data Understanding ANN. The seven rules learned

through data understanding led to 226 true positive alerts triggered through the ANN.

Using the rules learned through data understanding, there were 10 false negative alerts

and 16 false positive alerts from across the three collections. Tables 4.3 - 4.5 provide

summarized views of the alerts triggered by the data understanding ANN, along with

the alert’s relation to events during the controlled collections.

Table 4.3: The data understanding ANN generated 3

alerts, 3 false positive alerts, and 0 false negatives, per-

taining to the target machine’s network activity during

40 minutes of what is considered normal activity. While

the events were related to valid user activity, the thresh-

old for the number of active ports was likely set too low,

resulting in the false identification of scanning activity.

Data Understanding ANN Alerts - Normal Activity Collection

Alerts Alert Trigger Classification EVENT

3 20+ active local ports Scanning [17] Surfing Web, 43

ports

1 Total alerts in ”Normal Activity” collection

80

Table 4.4: The data understanding ANN generated 85

alerts, with 4 false positives and 11 false negatives (10 of

which were false negatives for Snort as well), pertaining

to the target machine during the 40 minutes of scanning

activity intermixed with periods of normal activity.

Data Understanding ANN Alerts - Scanning Activity Collection

Alerts Alert Trigger Classification EVENT

1 File IO with net.exe Exploit [n/a] Between scan-

ning events

3 20+ active local ports Scanning [n/a] Surfing Web

1 20+ active local ports Scanning [10] NMap, Intense

Scan

2 20+ active local ports Scanning [11] NMap, Intense

Scan plus UDP

28 20+ active local ports Scanning [12] NMap, Intense

Scan plus TCP

2 20+ active local ports Scanning [13] NMap, Intense

Scan, No Ping

1 20+ active local ports Scanning [15] NMap, Quick

Scan

1 20+ active local ports Scanning [16] NMap, Quick

Scan Plus

2 20+ active local ports Scanning [18] NMap, Regular

Scan

2 20+ active local ports Scanning [19] NMap, Slow Com-

prehensive Scan

Continued on Next Page. . .

81

Table 4.4 – Continued

Alerts Alert Trigger Classification EVENT

40 20+ active local ports Scanning [20] Nessus, Aggres-

sive Scan

2 20+ active local ports Scanning [21] Nessus, Stealthy

Scan

85 Total alerts in ”Scanning Activity” collection

Table 4.5: The data understanding ANN generated 164

alerts, with 3 false positives and 5 false negatives (3 of

which were false negatives for Snort as well) pertaining

to the target machine during the nine minute collection

period of intermixed normal and exploit activity.

Data Understanding ANN Alerts - Exploit Activity Collection

Alerts Alert Trigger Classification EVENT

3 File IO with net.exe Exploit [n/a] No event at this

time

8 File IO with net.exe Exploit [1] metasploit: ad-

duser payload

17 File IO with net.exe,

MUP, mailslot or re-

mote as system

Exploit [3] RShell: connect

network drive from

target to hacker ma-

chine.

2 File IO with Remote

as system

Exploit [4] RShell: interacting

with console.

Continued on Next Page. . .

82

Table 4.5 – Continued

Alerts Alert Trigger Classification EVENT

15 File IO with net.exe,

MUP or remote as sys-

tem

Exploit [5] RShell: run ad-

dAdminAccount.bat

50 File IO with MUP,

password dump or re-

mote as system

Exploit [6] RShell: run steal-

passwords.bat

9 File IO with MUP, Re-

mote as system

Exploit [7] RShell: run plant-

Backdoor.bat

4 File IO Remote as sys-

tem

Exploit [11] RShell: run plant-

Backdoor.bat

15 File IO MUP, mailsot,

remote as system

Exploit [13] RShell: run enu-

musersingroups.vbs

7 File IO MUP and Re-

mote as system

Exploit [14] RShell: run cover-

tracks.bat

18 File IO MUP, remote

as system

Exploit [15] RShell: run plan-

tkeylogger.bat

18 File IO MUP, remote

as system

Exploit [15] RShell: run cover-

tracks.bat

4.2.2 Alerts Triggered: Snort IDS. Results were compared to the leading

open source intrusion detection system provided by SourceFire, Snort [64]. Snort

was installed on a Linux virtual machine (Ubuntu version 8.10), configured with

the default rules. Tables 4.6–4.8 provide summarized views of the alerts triggered by

Snort for each collection, along with the alert’s relation to events during the controlled

collections.

83

Table 4.6: Snort generated 285 alerts, with 285 false pos-

itives and 0 false negatives, pertaining to the target ma-

chine during 40 minutes of what is considered normal

activity for just one machine.

Snort Alerts - Normal Activity Collection

Alerts Alert Trigger Classification EVENT

6 COMMUNITY WEB-

MISC mod jrun over-

flow attempt

Web Application At-

tack

[16] Powerpoint insert

online clipart

[17] Internet Explorer

use

235 MISC UPnP mal-

formed advertisement

Misc Attack [n/a] Valid alerts, but

not related a scripted

event

12 SCAN UPnP service

discover attempt

Generic Protocol

Command Decode

[n/a] Valid alerts, but

not related a scripted

event

11 WEB-MISC Lotus

Notes .exe script

source download

attempt

Web Application At-

tack

[17] Internet Explorer

use

2 WEB-MISC Invalid

HTTP Version String

Detection of a non-

standard protocol or

event

[17] Internet Explorer

use

Continued on Next Page. . .

84

Table 4.6 – Continued

Alerts Alert Trigger Classification EVENT

6 NETBIOS SMB Ses-

sion Setup NTMLSSP

unicode asn1 overflow

attempt

Generic Protocol

Command Decode

[2] Outlook short

email

[9] Word

[n/a] One event be-

tween steps

1 ICMP Destination

Unreachable Commu-

nication Administra-

tively Prohibited

Misc activity [17] Internet Explorer

use

10 NETBIOS SMB IPC$

unicode share access

Generic Protocol

Command Decode

[2] Outlook short

email

[9] Word

[17] Internet Explorer

use

[20] Word, Excel,

Powerpoint together

[n/a] One event be-

tween steps

1 (http inspect) U EN-

CODING

(not listed) [17] Internet Explorer

use

1 (portscan) UDP

Portsweep

(not listed) [17] Internet Explorer

use

285 TOTAL ALERTS IN ”NORMAL ACTIVITY”

85

Table 4.7: Snort generated 561 alerts, with 4 false posi-

tives and 9 false negatives, pertaining to the target ma-

chine during 40 minutes of what intermixed scanning and

normal activity for just one machine.

Snort Alerts - Scanning Activity Collection

Alerts Alert Trigger Classification EVENT

4 COMMUNITY WEB-

MISC mod jrun over-

flow attempt

Web Application At-

tack

[n/a] Valid alerts, but

not related a scripted

event

6 SCAN nmap XMAS Attempted Informa-

tion Leak

[10] NMAP intense

scan [11] NMAP in-

tense scan + UDP [12]

NMAP intense scan

+ TCP [13] NMAP

intense scan no ping

[16] NMAP quick scan

plus [19] NMAP slow

progressive scan

6 (snort decoder): Tcp

Window Scale Option

found with length ¿ 14

[10] NMAP intense

scan [11] NMAP in-

tense scan + UDP [12]

NMAP intense scan

+ TCP [13] NMAP

intense scan no ping

[16] NMAP quick scan

plus [19] NMAP slow

progressive scan

Continued on Next Page. . .

86

Table 4.7 – Continued

Alerts Alert Trigger Classification EVENT

205 MISC UPnP mal-

formed advertisement

Misc Attack [10] NMAP intense

scan (11 alerts) [12]

NMAP intense scan

+ TCP [15] NMAP

quick scan [20] NES-

SUS aggressive scan

[21] NESSUS lighter

scan

6 SNMP public access

udp

Attempted Informa-

tion Leak

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

2 SNMP private access

udp

Attempted Informa-

tion Leak

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

12 SNMP request udp Attempted Informa-

tion Leak

[11] NMAP intense

scan + UDP [19]

NMAP slow progres-

sive scan [20] NESSUS

aggressive scan [21]

NESSUS lighter scan

Continued on Next Page. . .

87

Table 4.7 – Continued

Alerts Alert Trigger Classification EVENT

6 SNMP request tcp Attempted Informa-

tion Leak

[11] NMAP intense

scan + UDP [12]

NMAP intense scan

+ TCP [13] NMAP

intense scan no ping

[18] NMAP regular

scan [20] NESSUS

aggressive scan [21]

NESSUS lighter scan

2 SNMP trap udp Attempted Informa-

tion Leak

[11] NMAP intense

scan + UDP [19]

NMAP slow progres-

sive scan

4 SNMP trap tcp Attempted Informa-

tion Leak

[12] NMAP intense

scan + TCP [20] NES-

SUS aggressive scan

[21] NESSUS lighter

scan

7 SNMP AgentX/tcp

request

Attempted Informa-

tion Leak

NMAP and Nessus

(steps 10, 12, 13, 18,

20, 21)

12 TFTP Get Potentially Bad Traf-

fic

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

Continued on Next Page. . .

88

Table 4.7 – Continued

Alerts Alert Trigger Classification EVENT

2 MISC AFS access Misc activity [20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

2 MISC xdmcp info

query

Attempted Informa-

tion Leak

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

17 SCAN UPnP service

discover attempt

Detection of a Net-

work Scan

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

2 MS-SQL ping attempt Misc activity [20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

2 NETBIOS DCERPC

Remote Activation

bind attempt

Attempted Adminis-

trator Privilege Gain

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

101 NETBIOS SMB-

DS Session Setup

AndX request unicode

username overflow

attempt

Attempted Adminis-

trator Privilege Gain

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

79 NETBIOS SMB-DS

IPC$ unicode share

access

Generic Protocol

Command Decode

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

Continued on Next Page. . .

89

Table 4.7 – Continued

Alerts Alert Trigger Classification EVENT

2 NETBIOS SMB-DS

D$ unicode share

access

Generic Protocol

Command Decode

[21] NESSUS lighter

scan

2 NETBIOS SMB-DS

C$ unicode share

access

Generic Protocol

Command Decode

[21] NESSUS lighter

scan

4 NETBIOS SMB-DS

ADMIN$ unicode

share access

Generic Protocol

Command Decode

[21] NESSUS lighter

scan

3 DDOS mstream client

to handler

Attempted Denial of

Service

[12] NMAP intense

scan + TCP [20] NES-

SUS aggressive scan

[21] NESSUS lighter

scan

9 NETBIOS SMB-DS

repeated logon failure

Unsuccessful User

Privilege Gain

[20] NESSUS aggres-

sive scan

6 NETBIOS SMB Ses-

sion Setup NTMLSSP

unicode asn1 overflow

attempt

Generic Protocol

Command Decode

[1] ws ping [10]

NMAP intense scan

[n/a] 4 alerts between

events

10 NETBIOS SMB IPC$

unicode share access

Generic Protocol

Command Decode

[1] ws ping [10]

NMAP intense scan

[n/a] 4 alerts between

events

Continued on Next Page. . .

90

Table 4.7 – Continued

Alerts Alert Trigger Classification EVENT

2 NETBIOS SMB-

DS Session Setup

NTMLSSP unicode

asn1 overflow attempt

Generic Protocol

Command Decode

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

2 NETBIOS DCERPC

IActivation little en-

dian bind attempt

Generic Protocol

Command Decode

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

2 ICMP L3retriever

Ping

Attempted Informa-

tion Leak

ws ping and NMAP

(steps 1, 10)

6 ICMP PING NMAP Attempted Informa-

tion Leak

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

1 ICMP traceroute

ipopts

Attempted Informa-

tion Leak

[20] NESSUS aggres-

sive scan

4 BAD-TRAFFIC tcp

port 0 traffic

Misc activity [20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

4 SCAN Amanda client

version request

Attempted Informa-

tion Leak

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

1 WEB-CGI wrap ac-

cess

Attempted Informa-

tion Leak

Between scan events

2 (http inspect) OVER-

SIZE REQUEST-URI

DIRECTORY

Between scan events

Continued on Next Page. . .

91

Table 4.7 – Continued

Alerts Alert Trigger Classification EVENT

1 (http inspect) DOU-

BLE DECODING

ATTACK

Between scan events

15 (portscan) TCP

Portscan

[1] ws ping [10]

NMAP intense scan

[12] NMAP intense

scan + TCP [13]

NMAP intense scan

no ping [15] NMAP

quick scan [17] NMAP

quick tracert [18]

NMAP regular scan

[20] NESSUS aggres-

sive scan [21] NESSUS

lighter scan

5 (portscan) UDP

Portscan

NMAP and Nessus

(steps 11, 19, 20, 21)

3 (portscan) UDP

Portsweep

NMAP one one Nes-

sus (steps 10, 19, 20)

561 TOTAL ALERTS IN ”SCANNING ACTIVITY”

92

Table 4.8: Snort generated 57 alerts, 0 false positive

alerts, and 6 false negative alerts pertaining to the ex-

ploit collection.

Snort Alerts - Exploit Activity Collection

Alerts Alert Trigger Classification EVENT

Alerts Alert Trigger Classification EVENT

42 MISC UPnP malformed

advertisement

Misc Attack [n/a] Valid alerts, but

not related a scripted

event

2 NETBIOS SMB Ses-

sion Setup AndX re-

quest unicode username

overflow attempt

Attempted Administra-

tor Privilege Gain

[2] Metasploit reverse

shell start, [3] Metas-

ploit net use p: back to

blackhat box

2 NETBIOS SMB-DS

IPC$ share access

Generic Protocol Com-

mand Decode

[1] Metasploit adduser

payload, [2] Metasploit

reverse shell start

2 ICMP L3retriever Ping Attempted Information

Leak

[2] Metasploit reverse

shell start

4 NETBIOS SMB IPC$

unicode share access

Generic Protocol Com-

mand Decode

[5] Metasploit rshell ad-

dadminaccount.bat

1 ATTACK-

RESPONSES Microsoft

cmd.exe banner

Successful Administra-

tor Privilege Gain

[9] Netcat session

started

2 ATTACK-

RESPONSES directory

listing

Potentially Bad Traffic [n/a] Valid alerts, but

not related a scripted

event

Continued on Next Page. . .

93

Table 4.8 – Continued

Alerts Alert Trigger Classification EVENT

2 NETBIOS SMB Session

Setup NTMLSSP uni-

code asn1 overflow at-

tempt

Generic Protocol Com-

mand Decode

[15] Netcat plantkeylog-

ger.bat

57 TOTAL ALERTS IN ”ATTACK ACTIVITY”

Table 4.9: Comparison between Snort and ANN Ruleset

false positive and false negative alerts.

Dataset Ruleset True Positive

Alerts

False Positive

Alerts

False Negative

Alerts

Normal Snort 0 285 0

ANN 0 3 0

Scanning Snort 548 4 9

ANN 70 4 11

Exploit Snort 57 0 6

ANN 156 3 5

Total Snort 605 289 15

ANN 226 10 16

Overall, the methodology presented in this thesis resulted just 10 false positives

and 16 false negatives, a 91.5% reduction when compared to Snort IDS’ 289 false

positives and 15 false negatives. Additionally, six events involving malicious remote

shell connections were detected through the features discovered via data understand-

ing which were not detected by Snort, and three times as many true positive alerts

for exploit activity were generated by the data understanding ANN.

94

With regard to scanning, it is noted that Snort reported significantly more

true positive alerts than the ANN method. Conversely, the ANN method reported

significantly more true positive exploit activity alerts. As a NIDS, Snort signals an

alert for each packet meeting a specific signature, such as xmas tree scan or syn flood.

The focus of this body of work was not to duplicate all the alerts that another system

can create, but to discover a set of forensic data features which indicate a genre of

events while minimizing false alerts. Also, recall that the data is summarized by

two-second timeframe (see Section 3.2.1) with the ANN method for data alignment,

which will naturally yield lower number of alerts. While the numbers appear skewed,

a better comparison is between false positive and false negative alerts, as this is where

one tool or the other misidentified normal activity as scanning or exploitation activity,

or vice versa.

A system administrator who were to rely solely on Snort to perform intrusion

detection would need to filter through 289 alerts to find the truly malicious traffic, a

laborious and time consuming task for analyzing just 90 minutes of activity. Addi-

tionally, if this administrator were to miss the one alert which indicated the beginning

of a reverse shell connection, no additional alerts would have tipped off the admin-

istrator of a potential intrusion. The data understanding ANN identified six exploit

events which Snort did not alert at all, and a high number of alerts during those time

periods.

Nine of the sixteen false negatives revolve around events which Snort had also

not identified as malicious scanning events: lightweight scanning which falls below

the thresholds developed for identifying scanning events, such as produced via ping or

traceroute routines. The remaining false negatives resulted from the lack of correlated

forensic evidence within the data collected. Of the ten false positives, six related to two

periods of legitimate web browsing, where the maximum number of simultaneously

active ports threshold was surpassed. The remaining four resulted from the presence

of net.exe or net1.exe within a File IO event. Thresholds for a counts of each of

these events could reduce false positive rates, but at the risk of producing additional

95

false negatives. Additional data collections can help to establish better baselines for

thresholds, but a small number of false positives or false negatives is unavoidable.

96

V. Conclusions

This body of work delivers a methodology for collecting, parsing and analyzing live

forensic data for the purpose of identifying relevant host-based intrusion detection fea-

tures. An instrumented environment was established to perform host-based forensic

data collections during periods of normal, scanning and exploit activity. An extensi-

ble Java-based framework was developed to parse sensor data from six sensors into

sets of features for analysis. A SQL server database was built to aggregate and sum-

marize forensic records, as well as identify telling features of an intrusion. In order to

test the effectiveness of the selected features, an ANN was trained to classify normal,

scanning and exploit activity based on selected features. The instrumented envi-

ronment, sensor-parsing framework, SQL server database and ANN are all re-usable

components for future work in this or related areas.

This research identified seven host-based intrusion detection features, which not

only aided in detection of malicious activity, but also greatly reduced the incidence

of false positive alerts when compared to Snort IDS. These features are:

1. High count of local ports with activity.

2. File IO activity involving a /mailslot/.

3. File IO activity involving /mailslot/Nessus.

4. File IO activity involving /mup/.

5. File IO activity involving net.exe

6. Authentication File Dump Feature

7. Remote as System feature

Using only this small set of features, more accurate and sustained reporting

of malicious events occurred, though both the identification of events not discovered

by Snort IDS, and the reduction of false positive alerts which must be filtered by

a network defense technician. The methodology presented in this thesis identified

six events of sustained malicious remote activity which Snort IDS had not generated

97

alerts for. Additionally, the methodology yielded just 26 false positive alerts; a 91%

reduction to Snort’s 298 false positive alerts generated from the same collections.

Data understanding can be applied to host based intrusion detection research

to minimize false reporting of malicious events, easing the administrative burden

to network defenders, and providing for better decision quality information as to the

events taking place on the host system. Additionally, the results of a study performed

via data understanding can aid in the development of more effective and efficient live

forensic sensors. By choosing what data to attend to, such a study can identify the

minimum set of features a sensor needs to detect a malicious event, resulting in a

lighter impact to system resources by the sensor.

5.1 Need for Sustained feature discovery research

Communication systems, their vulnerabilties and the threats which challenge

their confidentiality, integrity, and availability, are constantly evolving. Neglecting

to search through forensic evidence to identify features which help to detect these

threats will further divide human trust in computing systems. What if instead of

focusing on the signature of a specific threat, developers created IDS which set their

sights on common forensic tripwires an attacker would disturb in order to successfully

attack a network; the behavior of programs vs what programs physically look like at

the byte level. Years of threat modeling research have solidified the definition of key

behavioral building blocks believed to be foundational for successful network attacks.

Depending on the goal(s) of the attack vector, one or more of these building blocks are

used to compromise a system: footprinting, scanning, enumerating, gaining access,

escalating privilege level, pilfering, covering tracks, creating back doors or executing

a denial of service. If detection is focused toward reasoning about which stage an

attack is in, the right COA (Course of Action) to mitigate the threat. The earlier this

detection is accomplished, the better chances system administrators have to intercept

andmitigate the threat before it can cause irrevocable damage.

98

5.2 Future Works

As mentioned in Chapter 1, there are a number of assumptions and known

limitations for this research. Among these were the fact that collections were done in

a controlled environment, the tools chosen for collecting forensic data consumed a lot

of system resources, the intractability of the search space, and optimality conditions.

This research was done in a relatively closed environment, with minimal out-

side interference in order to know what events are transpiring. This was important

for the identification of features, as it enabled the research to focus on data sur-

rounding malicious activity as compared to data which were assumed normal activity

periods. However, future efforts to test the effectiveness of features identified data

understanding could involve collections in larger, more operationally realistic network

environments. Other attacks and attack tools could be used to further expand and

validate the set of identified features deemed relevant to detecting malicious activ-

ity. These attacks could include the launching of denial of service, virus, botnet and

rootkit attacks.

Another potential future work is the development of lightweight forensic sensors,

such that live collection has minimal impact on the system being monitored. Such a

sensor could monitor for the features discovered by this and related research efforts,

and would likely involve the development of low level methods, such as intercepting

system and Application Program Interface (API) calls and other inter-process com-

munication. There are other areas which can be explored using data understanding

which were not explored through this research effort, such as performing memory

captures or monitoring other I/O ports or specific applications for malicious activity.

As mentioned, the intrusion detection search space is humongous. While an

analysis was performed to find relevant single-element forensic features within the

forensic evidence, it was not an exhaustive search. A more exhaustive search of

permutations between any/all forensic data elements may yield better results and

identify new features which can be used to improve detection rates and work to

99

further minimize false negative alerts. Additional permutations could be developed

number of different ways, to include combinations of features for a given observation,

timing and flow-based analysis between multiple observations.

100

Appendix A. Forensic Toolkit

A.1 Tools

The sensors listed in Table A are used to capture live forensic data for later

analysis.

A.2 Scripts

The following scripts are written as a batch to launch forensic tools in a consis-

tent and repeatable manner. Although care was taken to choose tools which minimized

their impact to system resources, there is a noticeable performance hit (memory and

processor) for all the data captures to files. During captures, with no additional

activity other than sensors running, processor utilization hovered around 35% and

memory utilization was around 185MB. The search for lightweight live forensic tools

is a challenge in its own right, and should be accomplished prior to any similar research

efforts.

The first file in the toolkit is the main “controller” script, named Autoexec.vbs.

The controller is written in Microsoft Visual Basic Script, and is run from the com-

mand line and interpreted with Windows Script Host v5.6 (included with Microsoft

Windows XP, SP2). The controller script creates a directory to save forensic data

collections to, and launches a DOS batch program which, in turn, kicks off each of

Forensic Programs Used
Application/Sensor Source
Windows Script Host v5.6 Included with MS Windows XP, SP2
logman.exe v5.1.2600.2180 Included with MS Windows XP, SP2
tshark.exe v1.2.4 Included with Wireshark v1.2.4
listdlls.exe v2.25 www.sysinternals.com
logonsession.exe v1.1 www.sysinternals.com
pslist.exe v1.28 www.sysinternals.com
tcpvcon.exe v2.54 www.sysinternals.com

Table A.1: Executable files used as part of the forensic toolkit (on the target
machine). If you’re unable to secure the same version, parsing the output may require
rework.

101

the forensic tools in the toolkit in succession. For each experiment, these tools are

launched by running Autoexec.vbs from the Windows console.

To use these scripts, save each of the below sections to the file names indicated.

Download the executables listed in Table A and save them to the system to be mon-

itored. Adjust file paths in batch files as necessary to match the location you saved

the executables to.

A.3 Controller Script: Autoexec.vbs

’***

’* AUTHOR: Capt Joe Erskine *

’* PURPOSE: Create directory to store forensic data *

’***

’***

’* The getDateString function builds & returns a string in the format of *

’* YYYY.MM.DD.HH.MM.SS *

’***

Function getDateString()

Dim nowDate

nowDate = Now()

getDateString = "" & Year(nowDate) & "."

If Len(Month(nowDate)) = 1 Then

getDateString = getDateString & "0"

End If

getDateString = getDateString & month(nowDate) & "."

If Len(Day(nowDate)) = 1 Then

getDateString = getDateString & "0"

End If

getDateString = getDateString & Day(nowDate) & "."

If Len(Hour(nowDate)) = 1 Then

102

getDateString = getDateString & "0"

End If

getDateString = getDateString & Hour(nowDate) & "."

If Len(Minute(nowDate)) = 1 Then

getDateString = getDateString & "0"

End If

getDateString = getDateString & Minute(nowDate) & "."

If Len(Second(nowDate)) = 1 Then

getDateString = getDateString & "0"

End If

getDateString = getDateString & Second(nowDate)

End Function

’***

’* The makeDirectory is method is responsible for creating a directory. *

’* The directory can be several layers deep, and if parent directories *

’* don’t exist, it creates them. If the directory already exists, it is *

’* left alone. *

’***

’***

’* makeDirectory() function *

’* Create a directory as specified by the newPath string *

’* adapted from... *

’* diablopup.blogspot.com/2007/04/vbscript-fun-create-file-system.html *

’***

Const CONST_DIRALREADYEXISTED = -2

Const CONST_DIRCREATIONFAILURE = -1

Const CONST_DIRCREATIONSUCCESS = 0

Function makeDirectory(newPath)

103

Dim outputFileObject, path, count, myArray, length

Set outputFileObject = CreateObject("Scripting.FileSystemObject")

If outputfileObject.FolderExists(newPath) Then

makeDirectory = CONST_DIRALREADYEXISTED

Else

path = ""

count = 0

myArray = Split(newPath, "\")

length = UBound(myArray)

While count <= length

path = path + myArray(count) + "\"

count = count + 1

If outputfileObject.FolderExists(path) Then

Else

outputfileObject.CreateFolder(path)

End If

Wend

If outputfileObject.FolderExists(newPath) Then

makeDirectory = CONST_DIRCREATIONSUCCESS

Else

makeDirectory = CONST_DIRCREATIONFAILURE

End If

End If

End Function

’***

’* main() function. *

’* Create directory structure for storing forensic data, then call our *

’* forensic tool launcher program, passing the file name *

’***

Sub main()

104

dim forensicDataDirectory

Set sh = CreateObject("WScript.Shell")

forensicDataDirectory = "Z:\Shared Documents\SensorData\" & _

getDateString

Select Case makeDirectory(forensicDataDirectory)

Case CONST_DIRCREATIONSUCCESS

WScript.Echo "Created directory: " & forensicDataDirectory

sh.SendKeys "start ""Forensic Tool Launcher"" /min "

sh.SendKeys "ForensicScan.bat """

sh.SendKeys forensicDataDirectory & """ {ENTER}"

Case CONST_DIRCREATIONFAILURE

WScript.Echo "ERROR, could not create directory: """

WScript.Echo forensicDataDirectory & """... Exiting script"

WScript.Quit(1)

Case CONST_DIRALREADYEXISTED

WScript.Echo "ERROR, directory: """ & forensicDataDirectory

WScript.Echo """ already exists... Exiting script"

WScript.Quit(1)

End Select

End Sub

’***

’* Call main function... *

’***

main

’***

’* END OF SCRIPT *

’***

105

A.4 Batch program: ForensicScan.bat

@echo off

break=on

cls

echo.

echo ***

echo * LFTB Live Forensic Tool Scanner v. 1.0 *

echo * AUTHOR: Joe Erskine, Capt, USAF *

echo * PURPOSE: Perform live forensic data collections *

echo * Log of captures being written to log file listed below. *

echo ***

echo.

echo Press [CTRL]+C to terminate

echo.

type C:\WINDOWS\system32\drivers\etc\services > "%~1\services.services"

cd "C:\Documents and Settings\user\Desktop\Cyber Tools\2.0 Sensors"

REM Launch separate process (command window) to capture network traffic

start "TShark" /min tshark.bat "%~1"

REM stop the threads event trace capture (if running), then start new one

logman threads stop

logman threads start

REM Launch separate process (console window) to capture process snapshots

start "ProcessSnapshot" /min processes.bat "%~1"

REM Launch Performance monitor trace using Microsoft’s logman utility

REM You must configure a trace log called "threads" before running logman

106

logman threads start

rem All files generated here are text-based, but their filetypes

rem are customized for identifying which parser to use in our java program

rem (So, do not change file exensions if using our java app unless

rem those changes are reflected in the program as well)

REM **

REM * Iteratively capture snapshots of logonsessions, tcp/udp network *

REM * connections to processes, and dlls associated with processes *

REM **

SET i=1

:TOPOFLOOP

cls

echo.

echo %date% %time%: Initiating forensic scans (round %i%)

echo Press [CTRL]+C at any time to terminate

echo.

echo FORENSIC START TIMESTAMP: %date% %time% > %1\%i%.logonsessions

Toolkit\logonsessions.exe /p >> %1\%i%.logonsessions

echo FORENSIC STOP TIMESTAMP: %date% %time% >> %1\%i%.logonsessions

echo FORENSIC START TIMESTAMP: %date% %time% > %1\%i%.tcpvcon

Toolkit\tcpvcon.exe -a -c >> %1\%i%.tcpvcon

echo FORENSIC STOP TIMESTAMP: %date% %time% >> %1\%i%.tcpvcon

echo FORENSIC START TIMESTAMP: %date% %time% > %1\%i%.listdlls

Toolkit\listdlls.exe >> %1\%i%.listdlls

echo FORENSIC STOP TIMESTAMP: %date% %time% >> %1\%i%.listdlls

107

cscript //nologo sleep.vbs 1000

SET /a i=%i%+1

GOTO TOPOFLOOP

REM **

REM * END OF BATCH PROGRAM *

REM **

A.5 Batch Program: tshark.bat

@echo off

echo ***

echo * Starting tshark to capture network packets *

echo * Press [CTRL]-C to stop capture *

echo ***

echo.

"C:\Program Files\Wireshark\tshark.exe" -p -w %1\tshark.pcap

A.6 Batch Program: processes.bat

@echo off

echo ***

echo * Starting process snapshots (at two-second intervals) *

echo * Press [CTRL]-C to stop capture *

echo ***

echo.

echo Starting process snapshots to "%~1%\processes.pslistx"

sysinternals\pslist.exe -x -s -r 2 >> "%~1%\processes.pslistx"

108

Appendix B. Normal Activity Scripts

The script shown in Figure B.1 was planned in an effort to provide some notional

“Normal” activity. It is not intended to capture the totality of what a person can do

on a computer, but to run the computer through a few common “end user” activities,

such as using a few client applications (client only and minimal client/server), using

email (client/server activity), browsing web sites. In the interest of keeping collections

small, the activities are admittedly more densely scheduled than a typical user may

implement them. It is important to note that the purpose for these scripts is purely for

data collection in support of this thesis, and not intended for user modeling research.

When running a capture, the experimenter should annotate start/stop times for

tracing through the data after the collection is complete.

NOTE - Initially, the author wrote a series of WSH scripts to automate normal

activity through a series of sendkeys() calls. However, while a “cool” concept, these

scripts were highly dependent on system timing, and if the processor was bogged

down, the scripts would fail (repeatedly). Those efforts were abandoned for this,

more manual process.

109

Figure B.1: “Normal activity” collections were performed by launching our sensors,
followed by carrying out this series of activities. Each event’s start and stop times
were recorded for later analysis.

110

Appendix C. Cyber Attack Scripts

The script shown in Figures C.1 and C.2 were planned in an effort to provide some

notional “Scanning” and “Exploit” activity. These scripts are not meant to capture

the totality of what an attacker can do on a computer, but to run the computer

through a few common “black hat” activities, such as using Nessus, MetaSploit and

BackOrifice. In the interest of keeping collections small, the activities were split into

two collection periods, and are admittedly more densely scheduled than a typical

hacker who knows nothing about the system under attack may implement them. It

is important to note that the purpose for these scripts is purely for data collection in

support of this thesis, and not intended for user modeling research.

As with the “normal activity” capture, the experimenter should annotate start/stop

times for tracing through the data after the collection is complete.

111

Figure C.1: “Scanning activity” collections were performed by launching our sensors
on our target system, followed by carrying out this series of activities from the black
hat system. Each event’s start and stop times were recorded for later analysis.

112

Figure C.2: “Exploit activity” collections were performed by launching our sensors
on our target system, followed by carrying out this series of activities from the black
hat system. Each event’s start and stop times were recorded for later analysis.

113

Bibliography

1. URL http://www.symantec.com/norton/antivirus.

2. “AFPC Demographic Report Builder Website”. URL
http://wwa.afpc.randolph.af.mil/demographics/.

3. “jNetPcap API Library”. URL http://www.jnetpcap.com, year=2009.

4. “Wireshark Website”. URL http://www.wireshark.org.

5. “Joint Publication 1-02, Department of Defense Dictionary of Military and Asso-
ciated Terms”, April 2001 (As ammended through 19 Aug 2009).

6. “Joint Publication 5-0, Joint Operational Planning”, April 2001 (As ammended
through 19 Aug 2009).

7. “Joint Publication 6-0, Joint Communication Systems”, Mar 2006.

8. “Insecure.org Website”, 2010. URL http://insecure.org.

9. Akkan, H. “DIGITAL FORENSICS”.

10. ALEXANDER, S. “finding malware on compromised Windows machines”.

11. Axelsson, S. “Intrusion detection systems: A survey and taxonomy”. Depart. of
Computer Engineering, Chalmers University, Tech. Rep, 99–15, 2000.

12. Baader, F., A. Bauer, P. Baumgartner, A. Cregan, A. Gabaldon, K. Ji, K. Lee,
D. Rajaratnam, and R. Schwitter. A Novel Architecture for Situation Awareness
Systems, 77. 2009.

13. Bace, R. and P. Mell. “NIST special publication on intrusion detection systems”.
SP800-31, NIST, Gaithersburg, MD, 2001.

14. Barham, P., R. Isaacs, R. Mortier, and D. Narayanan. “Magpie: real-time mod-
elling and performance-aware systems”. 9th Workshop on Hot Topics in Operating
Systems, Lihue, Hawaii. 2003.

15. Bass, T. “Intrusion detection systems and multisensor data fusion”. 2000.

16. Bernaille, L., R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian. “Traffic
classification on the fly”. ACM SIGCOMM Computer Communication Review,
36(2):26, 2006.

17. Black, N. “A Comparative Analysis of Two Approaches of Computer Network
Intrusion Detection”. cognita, 25.

18. Brugger, S.T. “KDD Cup99 dataset (Network Intrusion) considered harmful”.
KDnuggets newsletter, 7(18):15, 2007.

114

19. Brugger, S.T. and J. Chow. “An assessment of the DARPA IDS Evaluation
Dataset using Snort”. UCDAVIS department of Computer Science, 2007–1, 2007.

20. Carvey, H. “Malware analysis for windows administrators”. Digital Investigation,
2:19e22, 2005.

21. Chapman, P., J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and
R. Wirth. “CRISP-DM 1.0: Step-by-step data mining guide”. SPSS inc, 78,
2000.

22. Chari, S.N. and P.C. Cheng. “Bluebox: A policy-driven, host-based intrusion
detection system”. ACM Transactions on Information and System Security (TIS-
SEC), 6(2):173–200, 2003.

23. CHOO, V. and L. Scheiderich. “Information Operations Innovation Network
(IOIN) Demonstration”. 2006.

24. CJCS, Chairman U.S. Joint Chiefs of Staff. The National Military Strategy for
Cyberspace Operations. Department of Defense, Washington, DC, December 2006.

25. Clausewitz, Carl von. On War. Routledge & Kegan Paul, 1968.

26. CNN. “Thrift store MP3 player contains secret military files”, 2009. URL
http://www.cnn.com/2009/TECH/01/27/confidential.mp3.player/index.html.

27. Darren, P. “Number of viruses to top 1 million by 2009”, 2008. URL
http://www.computerworld.com/s/article/9075118/.

28. Debar, H., M. Dacier, and A. Wespi. “Towards a taxonomy of intrusion-detection
systems”. Comput. Networks, 31(8):805–822, 1999.

29. Demuth, H. and Hagan M. Beale, M. “The Neural Network Toolbox 6 for MAT-
LAB User’s Guide”. 2009.

30. Denning, D.E. “An intrusion-detection model”. IEEE Transactions on software
engineering, 13(2):222–232, 1987.

31. Dey, A.K. “Understanding and using context”. Personal and ubiquitous comput-
ing, 5(1):4–7, 2001.

32. Endsley, M.R. “Design and evaluation for situation awareness enhancement”.
Human Factors and Ergonomics Society Annual Meeting Proceedings, volume 32,
97–101. Human Factors and Ergonomics Society, 1988.

33. Endsley, M.R. “Theoretical underpinnings of situation awareness: A critical re-
view”. Situation awareness analysis and measurement, 3–32, 2000.

34. Florez, G. “Analyzing system call sequences with Adaboost”. Proceedings of the
2002 International Conference on Artificial Intelligence and Applications (AIA),
Malaga, Spain. 2002.

35. Fyfe, Colin. “Lecture Notes in Computer Science: Artificial Neural Networks and
Information Theory”, 2000.

115

36. Gonzalez, J.A. “Numerical Analysis for Relevant Features in Intrusion Detection
(NARFid)”, 2009.

37. Gregg, M. Certified ethical hacker. Que Certification, [Indianapolis, Ind.], 2006.

38. Haag, C.R., G.B. Lamont, P.D. Williams, and G.L. Peterson. “An artificial
immune system-inspired multiobjective evolutionary algorithm with application
to the detection of distributed computer network intrusions”, 2007.

39. Hall, D.L. and J. Llinas. “An introduction to multisensor data fusion”. Proceed-
ings of the IEEE, 85(1):6–23, 1997.

40. Haykin, S. “Neural networks and learning machines”. Prentice-Hall, 2008.

41. Howard, M., D. LeBlanc, and J. Viega. 19 deadly sins of software security.
McGraw-Hill/Osborne, 2005.

42. Ilgun, K., R.A. Kernmeter, and P.A. Porras. “State transition analysis: A rule-
based intrusion detection approach”. IEEE transactions on software engineering,
1995.

43. Kohavi, R. and G.H. John. “Wrappers for feature subset selection”. Artificial
intelligence, 97(1-2):273–324, 1997.

44. Laboratory, Lawrence Berkeley National. 2009. URL http://bro-ids.org.

45. Lamport, L. “Time, clocks, and the ordering of events in a distributed system”.
1978.

46. Lazarevic, A., L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. “A comparative
study of anomaly detection schemes in network intrusion detection”. Proceedings
of the Third SIAM International Conference on Data Mining. 2003.

47. Lee, J.H., J.H. Lee, S.G. Sohn, J.H. Ryu, and T.M. Chung. “Effective Value of
Decision Tree with KDD 99 Intrusion Detection Datasets for Intrusion Detection
System”. Advanced Communication Technology, 2:1170–1175, 2008.

48. Lee, W. and S.J. Stolfo. “A framework for constructing features and models
for intrusion detection systems”. ACM Transactions on Information and System
Security (TISSEC), 3(4):227–261, 2000.

49. Lee, W., S.J. Stolfo, P.K. Chan, E. Eskin, W. Fan, M. Miller, S. Hershkop, and
J. Zhang. “Real time data mining-based intrusion detection”. Proceedings of
DISCEX II, 89–100. Citeseer, 2001.

50. Liebrock, L., N.M. Socorro, and C. Veitch. “WINDOWS DIGITAL FORENSICS
TOOLKIT: An Analysis of Digital Forensics Tools”.

51. Liu, H. and L. Yu. “Toward integrating feature selection algorithms for classifi-
cation and clustering”. IEEE Transactions on knowledge and data engineering,
491–502, 2005.

116

52. Makanju, A.A.O., A.N. Zincir-Heywood, and E.E. Milios. “Clustering event logs
using iterative partitioning”. Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, 1255–1264. ACM New York,
NY, USA, 2009.

53. McClure, S., J. Scambray, and G. Kurtz. Hacking Exposed 6: Network Security
Secrets & Solutions. McGraw-Hill Osborne Media, 2009.

54. McHugh, J. “Testing intrusion detection systems: A critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln
Laboratory”. ACM Transactions on Information and System Security, 3(4):262–
294, 2000.

55. Nguyen, N., P. Reiher, and G.H. Kuenning. “Detecting insider threats by moni-
toring system call activity”. Proc. of IEEE Workshop on Information Assurance,
volume 38. Citeseer, 2001.

56. Noguchi, Yuki. “Lost a BlackBerry? Data Could Open
A Security Breach”. Washington Post, 2005. URL
http://www.washingtonpost.com/wp-dyn/content/article/2005/07/24/

AR2005072401135.html.

57. Okolica, J., J.T. McDonald, G.L. Peterson, R.F. Mills, and M.W. Haas. “Devel-
oping Systems for Cyber Situational Awareness”. 46, 2009.

58. Russell, S. and P. Norvig. “Artificial intelligence: a modern approach”. New
Jersey, 1995.

59. Russinovich, Mark. “Microsoft Sysinternals Suite”. URL
http://technet.microsoft.com/en-us/sysinternals/bb842062.aspx.

60. Russinovich, M.E. and D.A. Solomon. Microsoft Windows Internals, Microsoft
Windows Server 2003, Windows XP, and Windows 2000. Microsoft Press, 2005.

61. Schilit, B., N. Adams, R. Want, et al. “Context-aware computing applications”.
Proceedings of the workshop on mobile computing systems and applications, 85–90.
Citeseer, 1994.

62. Shilland, G.R. and U. Major. “Host-Based Multivariate Statistical Computer
Operating Process Anomaly Intrusion Detection System (PAIDS)”, 2009.

63. Simache, C., M. Kaâniche, and A. Saidane. “Event log based dependability analy-
sis of Windows NT and 2K systems”. Proc. of the 2002 Pacific Rim International
Symposium on Dependable Computing (PRDC02). 2002.

64. Sourcefire, 2009. URL http://www.snort.org.

65. Steinberg, A.N., F.E. White, and C.L. Bowman. “Revisions to the JDL data
fusion model”. Environmental Research Institute of Michigan, Arlington VA,
1999.

117

66. Stotz, A. and M. Sudit. “INformation Fusion Engine for Real-time Decision-
making (INFERD): a perceptual system for cyber attack tracking”. Proceedings
of the 10th IEEE International Conference on Information Fusion, 1–8. 2007.

67. Sullivan, S. “News from the Lab: Weblog Q & A”. URL http://www. f-secure.

com/weblog/archives/00001198.html, 2007.

68. Waits, C., J.A. Akinyele, R. Nolan, and L. Rogers. “Computer Forensics: Results
of Live Response Inquiry vs. Memory Image Analysis”. 2008.

69. Wang, W., X. Zhang, and S. Gombault. “Constructing attribute weights from
computer audit data for effective intrusion detection”. The Journal of Systems &
Software, 2009.

70. Wu, X., V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLach-
lan, A. Ng, B. Liu, P.S. Yu, et al. “Top 10 algorithms in data mining”. Knowledge
and Information Systems, 14(1):1–37, 2008.

71. Zaraska, K. “Prelude IDS: current state and development perspectives”. URL
http://www. prelude-ids. org/download/misc/pingwinaria/2003/paper. pdf, 2003.

118

Vita

Captain Joseph R. Erskine graduated from Cabrillo High School in Lompoc,

California in 1991. He entered undergraduate studies at Texas Lutheran University,

Seguin, Texas and in 2002, he obtained a Bachelor of Science degree, cum laude, in

Computer Science. He was commissioned in the United States Air Force in June of

2004. He is married with two children.

Captain Erskine entered the United States Air Force in 1992 as a Communications-

Computer Systems Programmer. He was assigned to the San Antonio Computer Ser-

vices Center as a Small Computer Analyst in San Antonio, Texas, where he was the

1993 Defense Information Systems Agency (DISA) nominee to Top 12 Outstanding

Airmen of the Year. In 1994, he was assigned to the Air Force Personnel Center

(AFPC), Randolph Air Force Base, Texas, first as a Network Systems Administra-

tor, then as an Internet Applications Programmer, where he authored the prototype

“Virtual Military Personnel Flight” (vMPF) application. He has proudly served two

tours as a volunteer Ceremonial Guardsman with the Randolph Air Force Base Honor

Guard. Following graduation from Texas Lutheran University, he was accepted to the

United States Air Force Officer Training School. Upon his commissioning in 2004,

he was assigned as Crew Commander, then as the Commander, Systems Integra-

tion Flight, to the Pacific Network Operations and Security Center (PACAF NOSC),

Hickam Air Force Base, Hawaii. In 2006, he was assigned as the Deputy Commander,

Command and Control Systems Flight, to the 56th Air Communication Squadron

(ACOMS), supporting the Pacific Air Operations Center. In 2008, he was selected to

attend the Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio.

Upon graduation, Captain Erskine will be assigned as a Computer Science Instructor

to the United States Air Force Academy, Colorado Springs, Colorado.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

119

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2010 Master’s Thesis Sept 2008 — Mar 2010

Developing Cyberspace Data Understanding:
Using CRISP-DM for

Host-based IDS Feature Mining

10-311

Joseph R. Erskine, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/10-01

Dr. Robert L. Herklotz
Air Force Office of Scientific Research, AFMC
801 North Randolph Street, Rm 732
Arlington VA 22203-1977
703-696-9544 (DSN: 426) robert.herklotz@afosr.af.mil

AFOSR/NL

Approval for public release; distribution is unlimited.

Current intrusion detection systems generate a large number of specific alerts, but do not provide actionable information.
Many times, these alerts must be analyzed by a network defender, a time consuming and tedious task which can occur
hours or days after an attack occurs. Improved understanding of the cyberspace domain can lead to great advancements
in Cyberspace situational awareness research and development. This thesis applies the Cross Industry Standard Process
for Data Mining (CRISP-DM) to develop an understanding about a host system under attack. Data is generated by
launching scans and exploits at a machine outfitted with a set of host-based data collectors. Through knowledge
discovery, features are identified within the data collected which can be used to enhance host-based intrusion detection.
By discovering relationships between the data collected and the events, human understanding of the activity is shown.
This method of searching for hidden relationships between sensors greatly enhances understanding of new attacks and
vulnerabilities, bolstering our ability to defend the cyberspace domain.

situational awareness, intrusion detection, data mining, threat modeling

U U U UU 136

Dr. Gilbert Peterson

(937)255–3636, x4281; gilbert.petersonafit.edu

